mirror of
https://github.com/Xaymar/obs-StreamFX
synced 2024-11-27 22:03:01 +00:00
403 lines
10 KiB
C++
403 lines
10 KiB
C++
/*
|
|
* Modern effects for a modern Streamer
|
|
* Copyright (C) 2018 Michael Fabian Dirks
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
#pragma once
|
|
#include <cinttypes>
|
|
#include <limits>
|
|
#include <string>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
extern "C" {
|
|
#ifdef _MSC_VER
|
|
#pragma warning(push)
|
|
#pragma warning(disable : 4201)
|
|
#endif
|
|
#include <graphics/vec2.h>
|
|
#include <graphics/vec3.h>
|
|
#include <graphics/vec4.h>
|
|
#include <obs-config.h>
|
|
#include <obs.h>
|
|
#ifdef _MSC_VER
|
|
#pragma warning(pop)
|
|
#endif
|
|
}
|
|
|
|
// Constants
|
|
#define S_PI 3.1415926535897932384626433832795 // PI = pi
|
|
#define S_PI2 6.283185307179586476925286766559 // 2PI = 2 * pi
|
|
#define S_PI2_SQROOT 2.506628274631000502415765284811 // sqrt(2 * pi)
|
|
#define S_RAD 57.295779513082320876798154814105 // 180/pi
|
|
#define S_DEG 0.01745329251994329576923690768489 // pi/180
|
|
#define D_DEG_TO_RAD(x) (x * S_DEG)
|
|
#define D_RAD_TO_DEG(x) (x * S_RAD)
|
|
|
|
const char* obs_module_recursive_text(const char* to_translate, size_t depth = std::numeric_limits<size_t>::max());
|
|
|
|
template<typename Enum>
|
|
struct enable_bitmask_operators {
|
|
static const bool enable = false;
|
|
};
|
|
|
|
template<typename Enum>
|
|
typename std::enable_if<enable_bitmask_operators<Enum>::enable, Enum>::type operator|(Enum lhs, Enum rhs)
|
|
{
|
|
using underlying = typename std::underlying_type<Enum>::type;
|
|
return static_cast<Enum>(static_cast<underlying>(lhs) | static_cast<underlying>(rhs));
|
|
}
|
|
|
|
template<typename Enum>
|
|
typename std::enable_if<enable_bitmask_operators<Enum>::enable, Enum>::type operator&(Enum lhs, Enum rhs)
|
|
{
|
|
using underlying = typename std::underlying_type<Enum>::type;
|
|
return static_cast<Enum>(static_cast<underlying>(lhs) & static_cast<underlying>(rhs));
|
|
}
|
|
|
|
template<typename Enum>
|
|
typename std::enable_if<enable_bitmask_operators<Enum>::enable, bool>::type any(Enum lhs)
|
|
{
|
|
using underlying = typename std::underlying_type<Enum>::type;
|
|
return static_cast<underlying>(lhs) != static_cast<underlying>(0);
|
|
}
|
|
|
|
template<typename Enum>
|
|
typename std::enable_if<enable_bitmask_operators<Enum>::enable, bool>::type exact(Enum lhs, Enum rhs)
|
|
{
|
|
using underlying = typename std::underlying_type<Enum>::type;
|
|
return static_cast<underlying>(lhs) == static_cast<underlying>(rhs);
|
|
}
|
|
|
|
#define P_ENABLE_BITMASK_OPERATORS(x) \
|
|
template<> \
|
|
struct enable_bitmask_operators<x> { \
|
|
static const bool enable = true; \
|
|
};
|
|
|
|
#define D_STR(s) #s
|
|
#define D_VSTR(s) D_STR(s)
|
|
|
|
namespace util {
|
|
bool inline are_property_groups_broken()
|
|
{
|
|
return obs_get_version() < MAKE_SEMANTIC_VERSION(24, 0, 0);
|
|
}
|
|
|
|
struct obs_graphics {
|
|
obs_graphics()
|
|
{
|
|
obs_enter_graphics();
|
|
}
|
|
~obs_graphics()
|
|
{
|
|
obs_leave_graphics();
|
|
}
|
|
};
|
|
|
|
obs_property_t* obs_properties_add_tristate(obs_properties_t* props, const char* name, const char* desc);
|
|
|
|
inline bool is_tristate_enabled(int64_t tristate)
|
|
{
|
|
return tristate == 1;
|
|
}
|
|
|
|
inline bool is_tristate_disabled(int64_t tristate)
|
|
{
|
|
return tristate == 0;
|
|
}
|
|
|
|
inline bool is_tristate_default(int64_t tristate)
|
|
{
|
|
return tristate == -1;
|
|
}
|
|
|
|
typedef union {
|
|
uint32_t color;
|
|
struct {
|
|
uint8_t r;
|
|
uint8_t g;
|
|
uint8_t b;
|
|
uint8_t a;
|
|
};
|
|
} rgba32;
|
|
typedef union {
|
|
uint32_t color;
|
|
struct {
|
|
uint8_t a;
|
|
uint8_t r;
|
|
uint8_t g;
|
|
uint8_t b;
|
|
};
|
|
} argb32;
|
|
|
|
struct vec2a : public vec2 {
|
|
// 16-byte Aligned version of vec2
|
|
static void* operator new(size_t count);
|
|
static void* operator new[](size_t count);
|
|
static void operator delete(void* p);
|
|
static void operator delete[](void* p);
|
|
};
|
|
|
|
#ifdef _MSC_VER
|
|
__declspec(align(16))
|
|
#endif
|
|
struct vec3a : public vec3 {
|
|
// 16-byte Aligned version of vec3
|
|
static void* operator new(size_t count);
|
|
static void* operator new[](size_t count);
|
|
static void operator delete(void* p);
|
|
static void operator delete[](void* p);
|
|
};
|
|
|
|
#ifdef _MSC_VER
|
|
__declspec(align(16))
|
|
#endif
|
|
struct vec4a : public vec4 {
|
|
// 16-byte Aligned version of vec4
|
|
static void* operator new(size_t count);
|
|
static void* operator new[](size_t count);
|
|
static void operator delete(void* p);
|
|
static void operator delete[](void* p);
|
|
};
|
|
|
|
inline size_t GetNearestPowerOfTwoAbove(size_t v)
|
|
{
|
|
return 1ull << size_t(ceil(log10(double(v)) / log10(2.0)));
|
|
}
|
|
|
|
inline size_t GetNearestPowerOfTwoBelow(size_t v)
|
|
{
|
|
return 1ull << size_t(floor(log10(double(v)) / log10(2.0)));
|
|
}
|
|
|
|
std::pair<int64_t, int64_t> size_from_string(std::string text, bool allowSquare = true);
|
|
|
|
namespace math {
|
|
// Proven by tests to be the fastest implementation on Intel and AMD CPUs.
|
|
// Ranking: log10, loop < bitscan < pow
|
|
// loop and log10 trade blows, usually almost identical.
|
|
// loop is used for integers, log10 for anything else.
|
|
template<typename T>
|
|
inline bool is_power_of_two(T v)
|
|
{
|
|
return T(1ull << uint64_t(floor(log10(T(v)) / log10(2.0)))) == v;
|
|
};
|
|
|
|
template<typename T>
|
|
inline bool is_power_of_two_loop(T v)
|
|
{
|
|
bool have_bit = false;
|
|
for (size_t index = 0; index < (sizeof(T) * 8); index++) {
|
|
bool cur = (v & (static_cast<T>(1ull) << index)) != 0;
|
|
if (cur) {
|
|
if (have_bit)
|
|
return false;
|
|
have_bit = true;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
#pragma push_macro("P_IS_POWER_OF_TWO_AS_LOOP")
|
|
#define P_IS_POWER_OF_TWO_AS_LOOP(x) \
|
|
template<> \
|
|
inline bool is_power_of_two(x v) \
|
|
{ \
|
|
return is_power_of_two_loop(v); \
|
|
}
|
|
P_IS_POWER_OF_TWO_AS_LOOP(int8_t);
|
|
P_IS_POWER_OF_TWO_AS_LOOP(uint8_t);
|
|
P_IS_POWER_OF_TWO_AS_LOOP(int16_t);
|
|
P_IS_POWER_OF_TWO_AS_LOOP(uint16_t);
|
|
P_IS_POWER_OF_TWO_AS_LOOP(int32_t);
|
|
P_IS_POWER_OF_TWO_AS_LOOP(uint32_t);
|
|
P_IS_POWER_OF_TWO_AS_LOOP(int64_t);
|
|
P_IS_POWER_OF_TWO_AS_LOOP(uint64_t);
|
|
#undef P_IS_POWER_OF_TWO_AS_LOOP
|
|
#pragma pop_macro("P_IS_POWER_OF_TWO_AS_LOOP")
|
|
|
|
template<typename T>
|
|
inline uint64_t get_power_of_two_exponent_floor(T v)
|
|
{
|
|
return uint64_t(floor(log10(T(v)) / log10(2.0)));
|
|
}
|
|
|
|
template<typename T>
|
|
inline uint64_t get_power_of_two_exponent_ceil(T v)
|
|
{
|
|
return uint64_t(ceil(log10(T(v)) / log10(2.0)));
|
|
}
|
|
|
|
template<typename T, typename C>
|
|
inline bool is_equal(T target, C value)
|
|
{
|
|
return (target > (value - std::numeric_limits<T>::epsilon()))
|
|
&& (target < (value + std::numeric_limits<T>::epsilon()));
|
|
}
|
|
|
|
template<typename T>
|
|
inline T gaussian(T x, T o /*, T u = 0*/)
|
|
{
|
|
// u/µ can be simulated by subtracting that value from x.
|
|
static const double_t pi = 3.1415926535897932384626433832795;
|
|
static const double_t two_pi = pi * 2.;
|
|
static const double_t two_pi_sqroot = 2.506628274631000502415765284811; //sqrt(two_pi);
|
|
|
|
if (is_equal<double_t>(0, o)) {
|
|
return T(std::numeric_limits<double_t>::infinity());
|
|
}
|
|
|
|
// g(x) = (1 / o√(2Π)) * e(-(1/2) * ((x-u)/o)²)
|
|
double_t left_e = 1. / (o * two_pi_sqroot);
|
|
double_t mid_right_e = ((x /* - u*/) / o);
|
|
double_t right_e = -0.5 * mid_right_e * mid_right_e;
|
|
double_t final = left_e * exp(right_e);
|
|
|
|
return T(final);
|
|
}
|
|
|
|
template<typename T>
|
|
inline T lerp(T a, T b, double_t v)
|
|
{
|
|
return static_cast<T>((static_cast<double_t>(a) * (1.0 - v)) + (static_cast<double_t>(b) * v));
|
|
}
|
|
|
|
template<typename T>
|
|
class kalman1D {
|
|
T _q_process_noise_covariance;
|
|
T _r_measurement_noise_covariance;
|
|
T _x_value_of_interest;
|
|
T _p_estimation_error_covariance;
|
|
T _k_kalman_gain;
|
|
|
|
public:
|
|
kalman1D()
|
|
: _q_process_noise_covariance(0), _r_measurement_noise_covariance(0), _x_value_of_interest(0),
|
|
_p_estimation_error_covariance(0), _k_kalman_gain(0.0)
|
|
{}
|
|
kalman1D(T pnc, T mnc, T eec, T value)
|
|
: _q_process_noise_covariance(pnc), _r_measurement_noise_covariance(mnc), _x_value_of_interest(value),
|
|
_p_estimation_error_covariance(eec), _k_kalman_gain(0.0)
|
|
{}
|
|
~kalman1D() {}
|
|
|
|
T filter(T measurement)
|
|
{
|
|
_p_estimation_error_covariance += _q_process_noise_covariance;
|
|
_k_kalman_gain =
|
|
_p_estimation_error_covariance / (_p_estimation_error_covariance + _r_measurement_noise_covariance);
|
|
_x_value_of_interest += _k_kalman_gain * (measurement - _x_value_of_interest);
|
|
_p_estimation_error_covariance = (1 - _k_kalman_gain) * _p_estimation_error_covariance;
|
|
return _x_value_of_interest;
|
|
}
|
|
|
|
T get()
|
|
{
|
|
return _x_value_of_interest;
|
|
}
|
|
};
|
|
} // namespace math
|
|
|
|
inline size_t aligned_offset(size_t align, size_t pos)
|
|
{
|
|
return ((pos / align) + 1) * align;
|
|
}
|
|
void* malloc_aligned(size_t align, size_t size);
|
|
void free_aligned(void* mem);
|
|
|
|
template<typename T, size_t N = 16>
|
|
class AlignmentAllocator {
|
|
public:
|
|
typedef T value_type;
|
|
typedef size_t size_type;
|
|
#ifdef __clang__
|
|
typedef ptrdiff_t difference_type;
|
|
#else
|
|
typedef std::ptrdiff_t difference_type;
|
|
#endif
|
|
|
|
typedef T* pointer;
|
|
typedef const T* const_pointer;
|
|
|
|
typedef T& reference;
|
|
typedef const T& const_reference;
|
|
|
|
public:
|
|
inline AlignmentAllocator() {}
|
|
|
|
template<typename T2>
|
|
inline AlignmentAllocator(const AlignmentAllocator<T2, N>&)
|
|
{}
|
|
|
|
inline ~AlignmentAllocator() {}
|
|
|
|
inline pointer adress(reference r)
|
|
{
|
|
return &r;
|
|
}
|
|
|
|
inline const_pointer adress(const_reference r) const
|
|
{
|
|
return &r;
|
|
}
|
|
|
|
inline pointer allocate(size_type n)
|
|
{
|
|
return (pointer)malloc_aligned(n * sizeof(value_type), N);
|
|
}
|
|
|
|
inline void deallocate(pointer p, size_type)
|
|
{
|
|
free_aligned(p);
|
|
}
|
|
|
|
inline void construct(pointer p, const value_type& wert)
|
|
{
|
|
new (p) value_type(wert);
|
|
}
|
|
|
|
inline void destroy(pointer p)
|
|
{
|
|
p->~value_type();
|
|
p;
|
|
}
|
|
|
|
inline size_type max_size() const
|
|
{
|
|
return size_type(-1) / sizeof(value_type);
|
|
}
|
|
|
|
template<typename T2>
|
|
struct rebind {
|
|
typedef AlignmentAllocator<T2, N> other;
|
|
};
|
|
|
|
bool operator!=(const AlignmentAllocator<T, N>& other) const
|
|
{
|
|
return !(*this == other);
|
|
}
|
|
|
|
// Returns true if and only if storage allocated from *this
|
|
// can be deallocated from other, and vice versa.
|
|
// Always returns true for stateless allocators.
|
|
bool operator==(const AlignmentAllocator<T, N>&) const
|
|
{
|
|
return true;
|
|
}
|
|
};
|
|
} // namespace util
|