mirror of
https://github.com/Xaymar/obs-StreamFX
synced 2024-11-11 06:15:05 +00:00
240 lines
7.6 KiB
C++
240 lines
7.6 KiB
C++
/*
|
|
* Modern effects for a modern Streamer
|
|
* Copyright (C) 2020 Michael Fabian Dirks
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
#include "nvidia-ar-facedetection.hpp"
|
|
#include "obs/gs/gs-helper.hpp"
|
|
#include "util/util-logging.hpp"
|
|
|
|
#include "warning-disable.hpp"
|
|
#include <algorithm>
|
|
#include <stdexcept>
|
|
#include "warning-enable.hpp"
|
|
|
|
#ifdef _DEBUG
|
|
#define ST_PREFIX "<%s> "
|
|
#define D_LOG_ERROR(x, ...) P_LOG_ERROR(ST_PREFIX##x, __FUNCTION_SIG__, __VA_ARGS__)
|
|
#define D_LOG_WARNING(x, ...) P_LOG_WARN(ST_PREFIX##x, __FUNCTION_SIG__, __VA_ARGS__)
|
|
#define D_LOG_INFO(x, ...) P_LOG_INFO(ST_PREFIX##x, __FUNCTION_SIG__, __VA_ARGS__)
|
|
#define D_LOG_DEBUG(x, ...) P_LOG_DEBUG(ST_PREFIX##x, __FUNCTION_SIG__, __VA_ARGS__)
|
|
#else
|
|
#define ST_PREFIX "<nvidia::ar::facedetection> "
|
|
#define D_LOG_ERROR(...) P_LOG_ERROR(ST_PREFIX __VA_ARGS__)
|
|
#define D_LOG_WARNING(...) P_LOG_WARN(ST_PREFIX __VA_ARGS__)
|
|
#define D_LOG_INFO(...) P_LOG_INFO(ST_PREFIX __VA_ARGS__)
|
|
#define D_LOG_DEBUG(...) P_LOG_DEBUG(ST_PREFIX __VA_ARGS__)
|
|
#endif
|
|
|
|
// At the current moment, both FaceDetection and FaceBoxDetection only support 8 faces.
|
|
#define ST_MAX_TRACKED_FACES 8
|
|
|
|
using namespace ::streamfx::nvidia;
|
|
|
|
streamfx::nvidia::ar::facedetection::~facedetection()
|
|
{
|
|
D_LOG_DEBUG("Finalizing... (Addr: 0x%" PRIuPTR ")", this);
|
|
}
|
|
|
|
streamfx::nvidia::ar::facedetection::facedetection()
|
|
: feature(FEATURE_FACE_DETECTION), _input(), _source(), _tmp(), _rects(), _rects_confidence(), _bboxes(),
|
|
_dirty(true)
|
|
{
|
|
D_LOG_DEBUG("Initializing... (Addr: 0x%" PRIuPTR ")", this);
|
|
|
|
// Assign CUDA Stream object.
|
|
if (auto err = set(P_NVAR_CONFIG "CUDAStream", _nvcuda->get_stream()); err != cv::result::SUCCESS) {
|
|
throw cv::exception("CUDAStream", err);
|
|
}
|
|
|
|
// Prepare initial memory
|
|
_rects.resize(ST_MAX_TRACKED_FACES);
|
|
_rects_confidence.resize(ST_MAX_TRACKED_FACES);
|
|
|
|
// Set up initial configuration
|
|
set_tracking_limit(1);
|
|
|
|
// Attempt to load the feature.
|
|
if (auto err = feature::load(); err != cv::result::SUCCESS) {
|
|
throw cv::exception("Load", err);
|
|
}
|
|
}
|
|
|
|
std::pair<size_t, size_t> ar::facedetection::tracking_limit_range()
|
|
{
|
|
return {1, ST_MAX_TRACKED_FACES};
|
|
}
|
|
|
|
size_t ar::facedetection::tracking_limit()
|
|
{
|
|
return _rects.size();
|
|
}
|
|
|
|
void ar::facedetection::set_tracking_limit(size_t v)
|
|
{
|
|
// Ensure there is always at least one face being tracked.
|
|
v = std::max<size_t>(v, 1);
|
|
|
|
// Resize all data.
|
|
_rects.resize(v);
|
|
_rects_confidence.resize(v);
|
|
|
|
// Update bounding boxes structure.
|
|
_bboxes.rects = _rects.data();
|
|
_bboxes.maximum = static_cast<uint8_t>(v);
|
|
_bboxes.current = 0;
|
|
|
|
// Update feature.
|
|
if (auto err = set_object(P_NVAR_OUTPUT "BoundingBoxes", reinterpret_cast<void*>(&_bboxes), sizeof(bounds_t));
|
|
err != cv::result::SUCCESS) {
|
|
throw cv::exception("BoundingBoxes", err);
|
|
}
|
|
if (auto err = set(P_NVAR_OUTPUT "BoundingBoxesConfidence", _rects_confidence); err != cv::result::SUCCESS) {
|
|
throw cv::exception("BoundingBoxesConfidence", err);
|
|
}
|
|
if (auto err = set(P_NVAR_CONFIG "Temporal", (v == 1)); err != cv::result::SUCCESS) {
|
|
throw cv::exception("Temporal", err);
|
|
}
|
|
|
|
// Mark effect dirty for reload.
|
|
_dirty = true;
|
|
}
|
|
|
|
void ar::facedetection::process(std::shared_ptr<::streamfx::obs::gs::texture> in)
|
|
{
|
|
// Enter Graphics and CUDA context.
|
|
auto gctx = ::streamfx::obs::gs::context();
|
|
auto cctx = _nvcuda->get_context()->enter();
|
|
|
|
#ifdef ENABLE_PROFILING
|
|
::streamfx::obs::gs::debug_marker profiler1{::streamfx::obs::gs::debug_color_magenta, "NvAR Face Detection"};
|
|
#endif
|
|
|
|
// Resize if the size or scale was changed.
|
|
resize(in->get_width(), in->get_height());
|
|
|
|
// Reload effect if dirty.
|
|
if (_dirty) {
|
|
load();
|
|
}
|
|
|
|
{ // Copy parameter to input.
|
|
#ifdef ENABLE_PROFILING
|
|
::streamfx::obs::gs::debug_marker profiler1{::streamfx::obs::gs::debug_color_copy, "Copy In -> Input"};
|
|
#endif
|
|
gs_copy_texture(_input->get_texture()->get_object(), in->get_object());
|
|
}
|
|
|
|
{ // Convert Input to Source format
|
|
#ifdef ENABLE_PROFILING
|
|
::streamfx::obs::gs::debug_marker profiler1{::streamfx::obs::gs::debug_color_convert, "Copy Input -> Source"};
|
|
#endif
|
|
if (auto res = _nvcv->NvCVImage_Transfer(_input->get_image(), _source->get_image(), 1.f,
|
|
_nvcuda->get_stream()->get(), _tmp->get_image());
|
|
res != ::streamfx::nvidia::cv::result::SUCCESS) {
|
|
D_LOG_ERROR("Failed to transfer input to processing source due to error: %s",
|
|
_nvcv->NvCV_GetErrorStringFromCode(res));
|
|
throw std::runtime_error("Transfer failed.");
|
|
}
|
|
}
|
|
|
|
{ // Run
|
|
#ifdef ENABLE_PROFILING
|
|
::streamfx::obs::gs::debug_marker profiler1{::streamfx::obs::gs::debug_color_cache, "Run"};
|
|
#endif
|
|
if (auto err = run(); err != cv::result::SUCCESS) {
|
|
throw cv::exception("Run", err);
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t streamfx::nvidia::ar::facedetection::count()
|
|
{
|
|
return _bboxes.current;
|
|
}
|
|
|
|
streamfx::nvidia::ar::rect_t const& streamfx::nvidia::ar::facedetection::at(size_t index)
|
|
{
|
|
float v;
|
|
return at(index, v);
|
|
}
|
|
|
|
streamfx::nvidia::ar::rect_t const& streamfx::nvidia::ar::facedetection::at(size_t index, float& confidence)
|
|
{
|
|
if (_bboxes.current == 0)
|
|
throw std::runtime_error("no tracked faces");
|
|
if (index > _bboxes.current)
|
|
throw std::out_of_range("index too large");
|
|
auto& ref = _rects.at(index);
|
|
confidence = _rects_confidence.at(index);
|
|
return ref;
|
|
}
|
|
|
|
void ar::facedetection::resize(uint32_t width, uint32_t height)
|
|
{
|
|
auto gctx = ::streamfx::obs::gs::context();
|
|
auto cctx = ::streamfx::nvidia::cuda::obs::get()->get_context()->enter();
|
|
|
|
if (!_tmp) {
|
|
_tmp = std::make_shared<::streamfx::nvidia::cv::image>(
|
|
width, height, ::streamfx::nvidia::cv::pixel_format::RGBA, ::streamfx::nvidia::cv::component_type::UINT8,
|
|
::streamfx::nvidia::cv::component_layout::PLANAR, ::streamfx::nvidia::cv::memory_location::GPU, 1);
|
|
}
|
|
|
|
if (!_input || (width != _input->get_texture()->get_width()) || (height != _input->get_texture()->get_height())) {
|
|
if (_input) {
|
|
_input->resize(width, height);
|
|
} else {
|
|
_input = std::make_shared<::streamfx::nvidia::cv::texture>(width, height, GS_RGBA_UNORM);
|
|
}
|
|
_dirty = true;
|
|
}
|
|
|
|
if (!_source || (width != _source->get_image()->width) || (height != _source->get_image()->height)) {
|
|
if (_source) {
|
|
_source->resize(width, height);
|
|
} else {
|
|
_source = std::make_shared<::streamfx::nvidia::cv::image>(
|
|
width, height, ::streamfx::nvidia::cv::pixel_format::BGR, ::streamfx::nvidia::cv::component_type::UINT8,
|
|
::streamfx::nvidia::cv::component_layout::INTERLEAVED, ::streamfx::nvidia::cv::memory_location::GPU, 1);
|
|
}
|
|
|
|
if (auto err = set(P_NVAR_INPUT "Image", _source); err != cv::result::SUCCESS) {
|
|
throw cv::exception("Image", err);
|
|
}
|
|
|
|
_dirty = true;
|
|
}
|
|
}
|
|
|
|
void streamfx::nvidia::ar::facedetection::load()
|
|
{
|
|
auto gctx = ::streamfx::obs::gs::context();
|
|
auto cctx = ::streamfx::nvidia::cuda::obs::get()->get_context()->enter();
|
|
|
|
// Assign CUDA Stream object.
|
|
if (auto err = set(P_NVAR_CONFIG "CUDAStream", _nvcuda->get_stream()); err != cv::result::SUCCESS) {
|
|
throw cv::exception("CUDAStream", err);
|
|
}
|
|
|
|
// Attempt to load the feature.
|
|
if (auto err = feature::load(); err != cv::result::SUCCESS) {
|
|
throw cv::exception("Load", err);
|
|
}
|
|
|
|
_dirty = false;
|
|
}
|