// Modern effects for a modern Streamer // Copyright (C) 2019 Michael Fabian Dirks // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA #include "gfx-blur-gaussian.hpp" #include "obs/gs/gs-helper.hpp" #include "plugin.hpp" #include "util-math.hpp" #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable : 4201) #endif #include #include #ifdef _MSC_VER #pragma warning(pop) #endif // FIXME: This breaks when MAX_KERNEL_SIZE is changed, due to the way the Gaussian // function first goes up at the point, and then once we pass the critical point // will go down again and it is not handled well. This is a pretty basic // approximation anyway at the moment. #define MAX_KERNEL_SIZE 128 #define MAX_BLUR_SIZE (MAX_KERNEL_SIZE - 1) #define SEARCH_DENSITY double_t(1. / 500.) #define SEARCH_THRESHOLD double_t(1. / (MAX_KERNEL_SIZE * 5)) #define SEARCH_EXTENSION 1 #define SEARCH_RANGE MAX_KERNEL_SIZE * 2 gfx::blur::gaussian_data::gaussian_data() { auto gctx = gs::context(); { char* file = obs_module_file("effects/blur/gaussian._effect"); _effect = std::make_shared(file); bfree(file); } // Precalculate Kernels for (size_t kernel_size = 1; kernel_size <= MAX_BLUR_SIZE; kernel_size++) { std::vector kernel_math(MAX_KERNEL_SIZE); std::vector kernel_data(MAX_KERNEL_SIZE); double_t actual_width = 1.; // Find actual kernel width. for (double_t h = SEARCH_DENSITY; h < SEARCH_RANGE; h += SEARCH_DENSITY) { if (util::math::gaussian(double_t(kernel_size + SEARCH_EXTENSION), h) > SEARCH_THRESHOLD) { actual_width = h; break; } } // Calculate and normalize double_t sum = 0; for (size_t p = 0; p <= kernel_size; p++) { kernel_math[p] = util::math::gaussian(double_t(p), actual_width); sum += kernel_math[p] * (p > 0 ? 2 : 1); } // Normalize to fill the entire 0..1 range over the width. double_t inverse_sum = 1.0 / sum; for (size_t p = 0; p <= kernel_size; p++) { kernel_data.at(p) = float_t(kernel_math[p] * inverse_sum); } _kernels.push_back(std::move(kernel_data)); } } gfx::blur::gaussian_data::~gaussian_data() { auto gctx = gs::context(); _effect.reset(); } std::shared_ptr<::gs::effect> gfx::blur::gaussian_data::get_effect() { return _effect; } std::vector const& gfx::blur::gaussian_data::get_kernel(size_t width) { if (width < 1) width = 1; if (width > MAX_BLUR_SIZE) width = MAX_BLUR_SIZE; width -= 1; return _kernels[width]; } gfx::blur::gaussian_factory::gaussian_factory() {} gfx::blur::gaussian_factory::~gaussian_factory() {} bool gfx::blur::gaussian_factory::is_type_supported(::gfx::blur::type v) { switch (v) { case ::gfx::blur::type::Area: return true; case ::gfx::blur::type::Directional: return true; case ::gfx::blur::type::Rotational: return true; case ::gfx::blur::type::Zoom: return true; default: return false; } } std::shared_ptr<::gfx::blur::base> gfx::blur::gaussian_factory::create(::gfx::blur::type v) { switch (v) { case ::gfx::blur::type::Area: return std::make_shared<::gfx::blur::gaussian>(); case ::gfx::blur::type::Directional: return std::static_pointer_cast<::gfx::blur::gaussian>(std::make_shared<::gfx::blur::gaussian_directional>()); case ::gfx::blur::type::Rotational: return std::make_shared<::gfx::blur::gaussian_rotational>(); case ::gfx::blur::type::Zoom: return std::make_shared<::gfx::blur::gaussian_zoom>(); default: throw std::runtime_error("Invalid type."); } } double_t gfx::blur::gaussian_factory::get_min_size(::gfx::blur::type) { return double_t(1.0); } double_t gfx::blur::gaussian_factory::get_step_size(::gfx::blur::type) { return double_t(1.0); } double_t gfx::blur::gaussian_factory::get_max_size(::gfx::blur::type) { return double_t(MAX_BLUR_SIZE); } double_t gfx::blur::gaussian_factory::get_min_angle(::gfx::blur::type v) { switch (v) { case ::gfx::blur::type::Directional: case ::gfx::blur::type::Rotational: return -180.0; default: return 0; } } double_t gfx::blur::gaussian_factory::get_step_angle(::gfx::blur::type) { return double_t(0.01); } double_t gfx::blur::gaussian_factory::get_max_angle(::gfx::blur::type v) { switch (v) { case ::gfx::blur::type::Directional: case ::gfx::blur::type::Rotational: return 180.0; default: return 0; } } bool gfx::blur::gaussian_factory::is_step_scale_supported(::gfx::blur::type v) { switch (v) { case ::gfx::blur::type::Area: case ::gfx::blur::type::Zoom: case ::gfx::blur::type::Directional: return true; default: return false; } } double_t gfx::blur::gaussian_factory::get_min_step_scale_x(::gfx::blur::type) { return double_t(0.01); } double_t gfx::blur::gaussian_factory::get_step_step_scale_x(::gfx::blur::type) { return double_t(0.01); } double_t gfx::blur::gaussian_factory::get_max_step_scale_x(::gfx::blur::type) { return double_t(1000.0); } double_t gfx::blur::gaussian_factory::get_min_step_scale_y(::gfx::blur::type) { return double_t(0.01); } double_t gfx::blur::gaussian_factory::get_step_step_scale_y(::gfx::blur::type) { return double_t(0.01); } double_t gfx::blur::gaussian_factory::get_max_step_scale_y(::gfx::blur::type) { return double_t(1000.0); } std::shared_ptr<::gfx::blur::gaussian_data> gfx::blur::gaussian_factory::data() { std::unique_lock ulock(_data_lock); std::shared_ptr<::gfx::blur::gaussian_data> data = _data.lock(); if (!data) { data = std::make_shared<::gfx::blur::gaussian_data>(); _data = data; } return data; } ::gfx::blur::gaussian_factory& gfx::blur::gaussian_factory::get() { static ::gfx::blur::gaussian_factory instance; return instance; } gfx::blur::gaussian::gaussian() : _data(::gfx::blur::gaussian_factory::get().data()), _size(1.), _step_scale({1., 1.}) { auto gctx = gs::context(); _rendertarget = std::make_shared(GS_RGBA, GS_ZS_NONE); _rendertarget2 = std::make_shared(GS_RGBA, GS_ZS_NONE); } gfx::blur::gaussian::~gaussian() {} void gfx::blur::gaussian::set_input(std::shared_ptr<::gs::texture> texture) { _input_texture = texture; } ::gfx::blur::type gfx::blur::gaussian::get_type() { return ::gfx::blur::type::Area; } double_t gfx::blur::gaussian::get_size() { return _size; } void gfx::blur::gaussian::set_size(double_t width) { if (width < 1.) width = 1.; if (width > MAX_BLUR_SIZE) width = MAX_BLUR_SIZE; _size = width; } void gfx::blur::gaussian::set_step_scale(double_t x, double_t y) { _step_scale.first = x; _step_scale.second = y; } void gfx::blur::gaussian::get_step_scale(double_t& x, double_t& y) { x = _step_scale.first; y = _step_scale.second; } double_t gfx::blur::gaussian::get_step_scale_x() { return _step_scale.first; } double_t gfx::blur::gaussian::get_step_scale_y() { return _step_scale.second; } std::shared_ptr<::gs::texture> gfx::blur::gaussian::render() { auto gctx = gs::context(); std::shared_ptr<::gs::effect> effect = _data->get_effect(); auto kernel = _data->get_kernel(size_t(_size)); if (!effect || ((_step_scale.first + _step_scale.second) < std::numeric_limits::epsilon())) { return _input_texture; } float_t width = float_t(_input_texture->get_width()); float_t height = float_t(_input_texture->get_height()); // Setup gs_set_cull_mode(GS_NEITHER); gs_enable_color(true, true, true, true); gs_enable_depth_test(false); gs_depth_function(GS_ALWAYS); gs_blend_state_push(); gs_reset_blend_state(); gs_enable_blending(false); gs_blend_function(GS_BLEND_ONE, GS_BLEND_ZERO); gs_enable_stencil_test(false); gs_enable_stencil_write(false); gs_stencil_function(GS_STENCIL_BOTH, GS_ALWAYS); gs_stencil_op(GS_STENCIL_BOTH, GS_ZERO, GS_ZERO, GS_ZERO); effect->get_parameter("pImage")->set_texture(_input_texture); effect->get_parameter("pStepScale")->set_float2(float_t(_step_scale.first), float_t(_step_scale.second)); effect->get_parameter("pSize")->set_float(float_t(_size)); effect->get_parameter("pKernel")->set_float_array(kernel.data(), MAX_KERNEL_SIZE); // First Pass if (_step_scale.first > std::numeric_limits::epsilon()) { effect->get_parameter("pImageTexel")->set_float2(float_t(1.f / width), 0.f); { auto op = _rendertarget2->render(uint32_t(width), uint32_t(height)); gs_ortho(0, 1., 0, 1., 0, 1.); while (gs_effect_loop(effect->get_object(), "Draw")) { gs_draw_sprite(nullptr, 0, 1, 1); } } std::swap(_rendertarget, _rendertarget2); effect->get_parameter("pImage")->set_texture(_rendertarget->get_texture()); } // Second Pass if (_step_scale.second > std::numeric_limits::epsilon()) { effect->get_parameter("pImageTexel")->set_float2(0.f, float_t(1.f / height)); { auto op = _rendertarget2->render(uint32_t(width), uint32_t(height)); gs_ortho(0, 1., 0, 1., 0, 1.); while (gs_effect_loop(effect->get_object(), "Draw")) { gs_draw_sprite(nullptr, 0, 1, 1); } } std::swap(_rendertarget, _rendertarget2); } gs_blend_state_pop(); return this->get(); } std::shared_ptr<::gs::texture> gfx::blur::gaussian::get() { return _rendertarget->get_texture(); } gfx::blur::gaussian_directional::gaussian_directional() : m_angle(0.) {} gfx::blur::gaussian_directional::~gaussian_directional() {} ::gfx::blur::type gfx::blur::gaussian_directional::get_type() { return ::gfx::blur::type::Directional; } double_t gfx::blur::gaussian_directional::get_angle() { return D_RAD_TO_DEG(m_angle); } void gfx::blur::gaussian_directional::set_angle(double_t angle) { m_angle = D_DEG_TO_RAD(angle); } std::shared_ptr<::gs::texture> gfx::blur::gaussian_directional::render() { auto gctx = gs::context(); std::shared_ptr<::gs::effect> effect = _data->get_effect(); auto kernel = _data->get_kernel(size_t(_size)); if (!effect || ((_step_scale.first + _step_scale.second) < std::numeric_limits::epsilon())) { return _input_texture; } float_t width = float_t(_input_texture->get_width()); float_t height = float_t(_input_texture->get_height()); // Setup obs_enter_graphics(); gs_set_cull_mode(GS_NEITHER); gs_enable_color(true, true, true, true); gs_enable_depth_test(false); gs_depth_function(GS_ALWAYS); gs_blend_state_push(); gs_reset_blend_state(); gs_enable_blending(false); gs_blend_function(GS_BLEND_ONE, GS_BLEND_ZERO); gs_enable_stencil_test(false); gs_enable_stencil_write(false); gs_stencil_function(GS_STENCIL_BOTH, GS_ALWAYS); gs_stencil_op(GS_STENCIL_BOTH, GS_ZERO, GS_ZERO, GS_ZERO); effect->get_parameter("pImage")->set_texture(_input_texture); effect->get_parameter("pImageTexel") ->set_float2(float_t(1.f / width * cos(m_angle)), float_t(1.f / height * sin(m_angle))); effect->get_parameter("pStepScale")->set_float2(float_t(_step_scale.first), float_t(_step_scale.second)); effect->get_parameter("pSize")->set_float(float_t(_size)); effect->get_parameter("pKernel")->set_float_array(kernel.data(), MAX_KERNEL_SIZE); // First Pass { auto op = _rendertarget->render(uint32_t(width), uint32_t(height)); gs_ortho(0, 1., 0, 1., 0, 1.); while (gs_effect_loop(effect->get_object(), "Draw")) { gs_draw_sprite(nullptr, 0, 1, 1); } } gs_blend_state_pop(); return this->get(); } ::gfx::blur::type gfx::blur::gaussian_rotational::get_type() { return ::gfx::blur::type::Rotational; } std::shared_ptr<::gs::texture> gfx::blur::gaussian_rotational::render() { auto gctx = gs::context(); std::shared_ptr<::gs::effect> effect = _data->get_effect(); auto kernel = _data->get_kernel(size_t(_size)); if (!effect || ((_step_scale.first + _step_scale.second) < std::numeric_limits::epsilon())) { return _input_texture; } float_t width = float_t(_input_texture->get_width()); float_t height = float_t(_input_texture->get_height()); // Setup gs_set_cull_mode(GS_NEITHER); gs_enable_color(true, true, true, true); gs_enable_depth_test(false); gs_depth_function(GS_ALWAYS); gs_blend_state_push(); gs_reset_blend_state(); gs_enable_blending(false); gs_blend_function(GS_BLEND_ONE, GS_BLEND_ZERO); gs_enable_stencil_test(false); gs_enable_stencil_write(false); gs_stencil_function(GS_STENCIL_BOTH, GS_ALWAYS); gs_stencil_op(GS_STENCIL_BOTH, GS_ZERO, GS_ZERO, GS_ZERO); effect->get_parameter("pImage")->set_texture(_input_texture); effect->get_parameter("pImageTexel")->set_float2(float_t(1.f / width), float_t(1.f / height)); effect->get_parameter("pStepScale")->set_float2(float_t(_step_scale.first), float_t(_step_scale.second)); effect->get_parameter("pSize")->set_float(float_t(_size)); effect->get_parameter("pAngle")->set_float(float_t(m_angle / _size)); effect->get_parameter("pCenter")->set_float2(float_t(m_center.first), float_t(m_center.second)); effect->get_parameter("pKernel")->set_float_array(kernel.data(), MAX_KERNEL_SIZE); // First Pass { auto op = _rendertarget->render(uint32_t(width), uint32_t(height)); gs_ortho(0, 1., 0, 1., 0, 1.); while (gs_effect_loop(effect->get_object(), "Rotate")) { gs_draw_sprite(nullptr, 0, 1, 1); } } gs_blend_state_pop(); return this->get(); } void gfx::blur::gaussian_rotational::set_center(double_t x, double_t y) { m_center.first = x; m_center.second = y; } void gfx::blur::gaussian_rotational::get_center(double_t& x, double_t& y) { x = m_center.first; y = m_center.second; } double_t gfx::blur::gaussian_rotational::get_angle() { return double_t(D_RAD_TO_DEG(m_angle)); } void gfx::blur::gaussian_rotational::set_angle(double_t angle) { m_angle = D_DEG_TO_RAD(angle); } ::gfx::blur::type gfx::blur::gaussian_zoom::get_type() { return ::gfx::blur::type::Zoom; } std::shared_ptr<::gs::texture> gfx::blur::gaussian_zoom::render() { auto gctx = gs::context(); std::shared_ptr<::gs::effect> effect = _data->get_effect(); auto kernel = _data->get_kernel(size_t(_size)); if (!effect || ((_step_scale.first + _step_scale.second) < std::numeric_limits::epsilon())) { return _input_texture; } float_t width = float_t(_input_texture->get_width()); float_t height = float_t(_input_texture->get_height()); // Setup gs_set_cull_mode(GS_NEITHER); gs_enable_color(true, true, true, true); gs_enable_depth_test(false); gs_depth_function(GS_ALWAYS); gs_blend_state_push(); gs_reset_blend_state(); gs_enable_blending(false); gs_blend_function(GS_BLEND_ONE, GS_BLEND_ZERO); gs_enable_stencil_test(false); gs_enable_stencil_write(false); gs_stencil_function(GS_STENCIL_BOTH, GS_ALWAYS); gs_stencil_op(GS_STENCIL_BOTH, GS_ZERO, GS_ZERO, GS_ZERO); effect->get_parameter("pImage")->set_texture(_input_texture); effect->get_parameter("pImageTexel")->set_float2(float_t(1.f / width), float_t(1.f / height)); effect->get_parameter("pStepScale")->set_float2(float_t(_step_scale.first), float_t(_step_scale.second)); effect->get_parameter("pSize")->set_float(float_t(_size)); effect->get_parameter("pCenter")->set_float2(float_t(m_center.first), float_t(m_center.second)); effect->get_parameter("pKernel")->set_float_array(kernel.data(), MAX_KERNEL_SIZE); // First Pass { auto op = _rendertarget->render(uint32_t(width), uint32_t(height)); gs_ortho(0, 1., 0, 1., 0, 1.); while (gs_effect_loop(effect->get_object(), "Zoom")) { gs_draw_sprite(nullptr, 0, 1, 1); } } gs_blend_state_pop(); return this->get(); } void gfx::blur::gaussian_zoom::set_center(double_t x, double_t y) { m_center.first = x; m_center.second = y; } void gfx::blur::gaussian_zoom::get_center(double_t& x, double_t& y) { x = m_center.first; y = m_center.second; }