// OBS Default uniform float4x4 ViewProj; // Settings (Shared) uniform texture2d u_image; uniform float2 u_imageSize; uniform float2 u_imageTexel; uniform int u_radius; uniform int u_diameter; uniform float2 u_texelDelta; // Kernel Settings uniform float4 kernel[8]; // max kernel radius 31+center. // Bilateral Settings uniform float bilateralSmoothing; uniform float bilateralSharpness; // Data sampler_state pointSampler { Filter = Point; AddressU = Clamp; AddressV = Clamp; MinLOD = 0; MaxLOD = 0; }; sampler_state linearSampler { Filter = Linear; AddressU = Clamp; AddressV = Clamp; MinLOD = 0; MaxLOD = 0; }; struct VertDataIn { float4 pos : POSITION; float2 uv : TEXCOORD0; }; struct VertDataOut { float4 pos : POSITION; float2 uv : TEXCOORD0; }; VertDataOut VSDefault(VertDataIn vtx) { VertDataOut vert_out; vert_out.pos = mul(float4(vtx.pos.xyz, 1.0), ViewProj); vert_out.uv = vtx.uv; return vert_out; } /// Utility float GetKernelAt(int i) { return ((float[4])(kernel[floor(i/4)]))[i%4]; } /// Blur: Box float4 PSBoxBlur(VertDataOut vtx) : TARGET { float4 origin = u_image.SampleLevel(pointSampler, vtx.uv, 0); float4 final = origin; for (int k = 1; k <= u_radius; k++) { final += u_image.SampleLevel(pointSampler, vtx.uv + (u_texelDelta * k), 0); final += u_image.SampleLevel(pointSampler, vtx.uv - (u_texelDelta * k), 0); } final /= u_diameter; return final; } technique Box { pass { vertex_shader = VSDefault(vtx); pixel_shader = PSBoxBlur(vtx); } } /// Blur: Box (Linear Optimized) // By abusing Linear sampling we can reduce the necessary samples, halving the total samples. float4 PSBoxBlurLinear(VertDataOut vtx) : TARGET { // Radius 4 (Even): // [-4, -3, -2, -1, 0, +1, +2, +3, +4] // ^-S-^ ^-S-^ S ^-S-^ ^-S-^ // Total Samples: 5 (n+1) // Radius 3 (Odd): // [-3, -2, -1, 0, +1, +2, +3] // ^-S-^ ^-S-^ S ^-S-^ // Total Samples: 4 (n) // Radius 2 (Even): // [-2, -1, 0, +1, +2] // ^-S-^ S ^-S-^ float4 final = float4(0, 0, 0, 0); float2 halfTexelDelta = u_texelDelta / 2.0; if (u_radius % 2 == 0) { // Even Numbers require the origin sample in the middle. float4 origin = u_image.SampleLevel(pointSampler, vtx.uv, 0); final = origin; for (int k = 1; k <= u_radius; k+=2) { float2 offset = k * u_texelDelta + halfTexelDelta; final += u_image.SampleLevel(linearSampler, vtx.uv + offset, 0) * 2; final += u_image.SampleLevel(linearSampler, vtx.uv - offset, 0) * 2; } } else { // Odd Numbers put the origin sample in another location. float4 origin = u_image.SampleLevel(pointSampler, vtx.uv + u_texelDelta, 0); float4 group = u_image.SampleLevel(linearSampler, vtx.uv - halfTexelDelta, 0); final = origin + group * 2; for (int k = 2; k <= u_radius; k+=2) { float2 offset = k * u_texelDelta + halfTexelDelta; final += u_image.SampleLevel(linearSampler, vtx.uv + offset, 0) * 2; final += u_image.SampleLevel(linearSampler, vtx.uv - offset, 0) * 2; } } final /= u_diameter; return final; } technique BoxLinear { pass { vertex_shader = VSDefault(vtx); pixel_shader = PSBoxBlurLinear(vtx); } } /// Blur: Gaussian float4 PSGaussianBlur(VertDataOut vtx) : TARGET { float2 uvOffset = float2(0, 0); float4 final = u_image.SampleLevel(pointSampler, vtx.uv, 0) * GetKernelAt(0); for (int k = 1; k <= u_radius; k++) { uvOffset += u_texelDelta; float l_g = GetKernelAt(k); float4 l_p = u_image.SampleLevel(pointSampler, vtx.uv + uvOffset, 0); float4 l_n = u_image.SampleLevel(pointSampler, vtx.uv - uvOffset, 0); final += (l_p + l_n) * l_g; } return final; } technique Gaussian { pass { vertex_shader = VSDefault(vtx); pixel_shader = PSGaussianBlur(vtx); } } /// Blur: Gaussian Linear float4 PSGaussianLinearBlur(VertDataOut vtx) : TARGET { // Origin sample must always be sampled. // Even, Odd must decide differently than Box Blur // Radius 5 (Odd): // [-5, -4, -3, -2, -1, 0, +1, +2, +3, +4, +5] // S ^-S-^ ^-S-^ S ^-S-^ ^-S-^ S // S ^-S-^ ^-S-^ S ^-S-^ ^-S-^ S // Total Samples: 7 (n+2) // Radius 4 (Even): // [-4, -3, -2, -1, 0, +1, +2, +3, +4] // ^-S-^ ^-S-^ S ^-S-^ ^-S-^ // Total Samples: 5 (n+1) // Radius 3 (Odd): // [-3, -2, -1, 0, +1, +2, +3] // S ^-S-^ S ^-S-^ S // Total Samples: 5 (n+2) // Radius 2 (Even): // [-2, -1, 0, +1, +2] // ^-S-^ S ^-S-^ // Total Samples: 3 (n+1) float4 origin = u_image.SampleLevel(pointSampler, vtx.uv, 0); float4 final = origin * GetKernelAt(0); float2 halfTexelDelta = u_texelDelta / 2.0; for (int k = 1; k < u_radius; k+=2) { float2 offset = k * u_texelDelta + halfTexelDelta; float l_g0 = GetKernelAt(k); float l_g1 = GetKernelAt(k +1); float4 l_p = u_image.SampleLevel(linearSampler, vtx.uv + offset, 0); float4 l_n = u_image.SampleLevel(linearSampler, vtx.uv - offset, 0); final += (l_p + l_n) * l_g0; final += (l_p + l_n) * l_g1; } if (u_radius % 2 == 1) { // Odd numbers require treatment of ends. float4 left = u_image.SampleLevel(pointSampler, vtx.uv + u_texelDelta * u_radius, 0); float4 right = u_image.SampleLevel(pointSampler, vtx.uv - u_texelDelta * u_radius, 0); float krn = GetKernelAt(u_radius); final += (left + right) * krn; } return final; } technique GaussianLinear { pass { vertex_shader = VSDefault(vtx); pixel_shader = PSGaussianLinearBlur(vtx); } } /// Blur: Bilateral float Bilateral(float x, float sigma) { return 0.39894 * exp(-0.5 * (x*x) / (sigma*sigma)) / sigma; } float Bilateral3(float3 v, float sigma) { // First part is Bilateral function (1.0 / (o * sqrt(2.0 * pivalue))) with o = 1 return 0.39894 * exp(-0.5 * dot(v,v) / (sigma*sigma)) / sigma; } float4 PSBilateralBlur(VertDataOut vtx) : TARGET { float4 origin = u_image.SampleLevel(pointSampler, vtx.uv, 0); float2 uvOffset = float2(0, 0); float Z = 0.0; float bZ = 1.0 / Bilateral(0.0, bilateralSharpness); float3 color = float3(0, 0, 0); for (int k = 1; k <= u_radius; k++) { uvOffset += u_texelDelta; // Bilateral Kernel float bKernel = Bilateral(abs(k), bilateralSmoothing); bKernel *= bKernel; float bZKernel = bZ * bKernel; // Sample Color float3 l_p = u_image.SampleLevel(pointSampler, vtx.uv + uvOffset, 0).rgb; float3 l_n = u_image.SampleLevel(pointSampler, vtx.uv - uvOffset, 0).rgb; // Bilateral Stuff float l_factor_p = Bilateral3(l_p - origin.rgb, bilateralSharpness) * bZKernel; float l_factor_n = Bilateral3(l_n - origin.rgb, bilateralSharpness) * bZKernel; Z = Z + l_factor_p + l_factor_n; // Store Color color += l_p * l_factor_p; color += l_n * l_factor_n; } return float4(color.rgb / Z, origin.a); } technique Bilateral { pass { vertex_shader = VSDefault(vtx); pixel_shader = PSBilateralBlur(vtx); } }