// AUTOGENERATED COPYRIGHT HEADER START // Copyright (C) 2019-2023 Michael Fabian 'Xaymar' Dirks // AUTOGENERATED COPYRIGHT HEADER END #include "common.effect" // # Linear Optimization // While the normal way is to sample every texel in the pSize, linear optimization // takes advantage of the fact that most people, especially after compression, // will not be able to tell the difference between a linear approximation and // the actual thing. // // Instead of sampling every texel like this: // // |Tx|Tx|Tx|Tx|Tx| // Tx|-2|-1| 0|+1|+2| // // Linear optimization will sample like this: // // |Tx|Tx|Tx|Tx|Tx| // Tx| -1 | 0| +1 | // // This effectively removes half the necessary samples and looks identical when // when used with box blur. However there is an edge case when the blur width // is not a multiple of two, where two additional samples have to be spent on // reading the outer edge: // // |Tx|Tx|Tx|Tx|Tx|Tx|Tx| // Tx|-2| -1 | 0| +1 |+2| // // or this alternative pattern that uses two less samples: // // |Tx|Tx|Tx|Tx|Tx|Tx|Tx| // Tx| 0 | +1 | +2 |+3| // // or this alternative pattern that also uses two less samples: // // |Tx|Tx|Tx|Tx|Tx|Tx|Tx| // Tx| -2 | -1~~+1 | +2 | // // With careful planning this can even be used for other types of Blur, such as // Gaussian Blur, which suffers a larger hit - however there are better and // faster alternatives than linear sampling with Gaussian Blur, such as // Dual Filtering ("Dual Kawase"). //------------------------------------------------------------------------------ // Defines //------------------------------------------------------------------------------ #define MAX_BLUR_SIZE 128 //------------------------------------------------------------------------------ // Technique: Directional / Area //------------------------------------------------------------------------------ float4 PSBlur1D(VertexInformation vtx) : TARGET { float4 final = pImage.Sample(LinearClampSampler, vtx.uv) * GetKernelAt(0); bool is_odd = ((int(round(pSize)) % 2) == 1); // y = yes, s = skip, b = break // Size-> | 1| 2| 3| 4| 5| 6| 7| // -------+--+--+--+--+--+--+--+ // n=1 | b| y| y| y| y| y| y| // n=2 | |bs| s| s| s| s| s| // n=3 | | b| b| y| y| y| y| // n=4 | | | |bs| s| s| s| // n=5 | | | | b| b| y| y| // n=6 | | | | | |bs| s| // n=7 | | | | | | b| b| // n=8 | | | | | | | | // Loop unrolling is only possible with a fixed known maximum. // Some compilers may unroll up to x iterations, but most will not. for (int n = 1; n <= MAX_BLUR_SIZE; n+=2) { // Different from normal box, early exit instead of late exit. if (n >= pSize) { break; } // TODO: Determine better position than 0.5 for gaussian approximation. float2 nstep = (pImageTexel * pStepScale) * (n + 0.5); float kernel = kernelAt(n) + kernelAt(n + 1); final += pImage.Sample(LinearClampSampler, vtx.uv + nstep) * kernel; final += pImage.Sample(LinearClampSampler, vtx.uv - nstep) * kernel; } if (is_odd) { float kernel = kernelAt(pSize); float2 nstep = (pImageTexel * pStepScale) * pSize; final += pImage.Sample(LinearClampSampler, vtx.uv + nstep) * kernel; final += pImage.Sample(LinearClampSampler, vtx.uv - nstep) * kernel; } return final; } technique Draw { pass { vertex_shader = VSDefault(vtx); pixel_shader = PSBlur1D(vtx); } }