/* * Modern effects for a modern Streamer * Copyright (C) 2017 Michael Fabian Dirks * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include "filter-nv-face-tracking.hpp" #include #include #include #include "nvidia/cuda/nvidia-cuda-context.hpp" #include "obs/gs/gs-helper.hpp" #include "obs/obs-tools.hpp" #define ST "Filter.Nvidia.FaceTracking" #define ST_ROI "Filter.Nvidia.FaceTracking.ROI" #define ST_ROI_ZOOM "Filter.Nvidia.FaceTracking.ROI.Zoom" #define SK_ROI_ZOOM "ROI.Zoom" #define ST_ROI_OFFSET "Filter.Nvidia.FaceTracking.ROI.Offset" #define ST_ROI_OFFSET_X "Filter.Nvidia.FaceTracking.ROI.Offset.X" #define SK_ROI_OFFSET_X "ROI.Offset.X" #define ST_ROI_OFFSET_Y "Filter.Nvidia.FaceTracking.ROI.Offset.Y" #define SK_ROI_OFFSET_Y "ROI.Offset.Y" #define ST_ROI_STABILITY "Filter.Nvidia.FaceTracking.ROI.Stability" #define SK_ROI_STABILITY "ROI.Stability" using namespace streamfx::filter::nvidia; void ar_feature_deleter(NvAR_FeatureHandle v) { face_tracking_factory::get()->get_ar()->destroy(v); } face_tracking_instance::face_tracking_instance(obs_data_t* settings, obs_source_t* self) : obs::source_instance(settings, self), _rt_is_fresh(false), _rt(), _cfg_zoom(1.0), _cfg_offset({0., 0.}), _cfg_stability(1.0), _geometry(), _filters(), _values(), _cuda(::nvidia::cuda::obs::get()), _cuda_stream(), _ar_library(face_tracking_factory::get()->get_ar()), _ar_loaded(false), _ar_feature(), _ar_is_tracking(false), _ar_bboxes_confidence(), _ar_bboxes_data(), _ar_bboxes(), _ar_texture(), _ar_texture_cuda_fresh(false), _ar_texture_cuda(), _ar_texture_cuda_mem(), _ar_image(), _ar_image_bgr(), _ar_image_temp() { #ifdef ENABLE_PROFILING // Profiling _profile_capture = util::profiler::create(); _profile_capture_realloc = util::profiler::create(); _profile_capture_copy = util::profiler::create(); _profile_ar_realloc = util::profiler::create(); _profile_ar_copy = util::profiler::create(); _profile_ar_transfer = util::profiler::create(); _profile_ar_run = util::profiler::create(); _profile_ar_calc = util::profiler::create(); #endif { // Create render target, vertex buffer, and CUDA stream. auto gctx = gs::context{}; _rt = std::make_shared(GS_RGBA_UNORM, GS_ZS_NONE); _geometry = std::make_shared(uint32_t(4), uint8_t(1)); auto cctx = _cuda->get_context()->enter(); _cuda_stream = std::make_shared<::nvidia::cuda::stream>(::nvidia::cuda::stream_flags::NON_BLOCKING, 0); } { // Asynchronously load Face Tracking. async_initialize(); } { // Set up initial tracking data. _values.center[0] = _values.center[1] = .5; _values.size[0] = _values.size[1] = 1.; refresh_region_of_interest(); } } face_tracking_instance::~face_tracking_instance() { // Kill pending tasks. streamfx::threadpool()->pop(_async_initialize); streamfx::threadpool()->pop(_async_track); _ar_loaded.store(false); std::unique_lock alk{_ar_lock}; _ar_library->image_dealloc(&_ar_image_temp); _ar_library->image_dealloc(&_ar_image_bgr); } void face_tracking_instance::async_initialize(std::shared_ptr ptr) { struct async_data { std::shared_ptr source; std::string models_path; }; if (!ptr) { // Spawn the work for the threadpool. std::shared_ptr data = std::make_shared(); data->source = std::shared_ptr(obs_source_get_weak_source(_self), obs::obs_weak_source_deleter); { std::filesystem::path models_path = _ar_library->get_ar_sdk_path(); models_path = models_path.append("models"); models_path = std::filesystem::absolute(models_path); models_path.concat("\\"); data->models_path = models_path.string(); } _async_initialize = streamfx::threadpool()->push( std::bind(&face_tracking_instance::async_initialize, this, std::placeholders::_1), data); } else { std::shared_ptr data = std::static_pointer_cast(ptr); // Try and acquire a strong source reference. std::shared_ptr remote_work = std::shared_ptr(obs_weak_source_get_source(data->source.get()), obs::obs_source_deleter); if (!remote_work) { // If that failed, the source we are working for was deleted - abort now. return; } // Update the current CUDA context for working. gs::context gctx; auto cctx = _cuda->get_context()->enter(); // Create Face Detection feature. { NvAR_FeatureHandle fd_inst; if (NvCV_Status res = _ar_library->create(NvAR_Feature_FaceDetection, &fd_inst); res != NVCV_SUCCESS) { throw std::runtime_error("Failed to create Face Detection feature."); } _ar_feature = std::shared_ptr{fd_inst, ar_feature_deleter}; } // Set the correct CUDA stream for processing. if (NvCV_Status res = _ar_library->set_cuda_stream(_ar_feature.get(), NvAR_Parameter_Config(CUDAStream), reinterpret_cast(_cuda_stream->get())); res != NVCV_SUCCESS) { throw std::runtime_error("Failed to set CUDA stream."); } // Set the correct models path. if (NvCV_Status res = _ar_library->set_string(_ar_feature.get(), NvAR_Parameter_Config(ModelDir), data->models_path.c_str()); res != NVCV_SUCCESS) { throw std::runtime_error("Unable to set model path."); } // Finally enable Temporal tracking if possible. if (NvCV_Status res = _ar_library->set_uint32(_ar_feature.get(), NvAR_Parameter_Config(Temporal), 1); res != NVCV_SUCCESS) { DLOG_WARNING("<%s> Unable to enable Temporal tracking mode.", obs_source_get_name(remote_work.get())); } // Create Bounding Boxes Data _ar_bboxes_data.assign(1, {0., 0., 0., 0.}); _ar_bboxes.boxes = _ar_bboxes_data.data(); _ar_bboxes.max_boxes = std::clamp(static_cast(_ar_bboxes_data.size()), 0, 255); _ar_bboxes.num_boxes = 0; _ar_bboxes_confidence.resize(_ar_bboxes_data.size()); if (NvCV_Status res = _ar_library->set_object(_ar_feature.get(), NvAR_Parameter_Output(BoundingBoxes), &_ar_bboxes, sizeof(NvAR_BBoxes)); res != NVCV_SUCCESS) { throw std::runtime_error("Failed to set BoundingBoxes for Face Tracking feature."); } if (NvCV_Status res = _ar_library->set_float32_array( _ar_feature.get(), NvAR_Parameter_Output(BoundingBoxesConfidence), _ar_bboxes_confidence.data(), static_cast(_ar_bboxes_confidence.size())); res != NVCV_SUCCESS) { throw std::runtime_error("Failed to set BoundingBoxesConfidence for Face Tracking feature."); } // And finally, load the feature (takes long). if (NvCV_Status res = _ar_library->load(_ar_feature.get()); res != NVCV_SUCCESS) { DLOG_ERROR("<%s> Failed to load Face Tracking feature.", obs_source_get_name(_self)); _ar_loaded = false; return; } else { _ar_loaded = true; } _async_initialize.reset(); } } void face_tracking_instance::async_track(std::shared_ptr ptr) { struct async_data { std::shared_ptr source; }; if (!_ar_loaded) return; if (!ptr) { // Check if we can track. if (_ar_is_tracking) return; // Can't track a new frame right now. #ifdef ENABLE_PROFILING gs::debug_marker gdm{gs::debug_color_convert, "Start Asynchronous Tracking"}; #endif // Don't push additional tracking frames while processing one. _ar_is_tracking = true; // Spawn the work for the threadpool. std::shared_ptr data = std::make_shared(); data->source = std::shared_ptr(obs_source_get_weak_source(_self), obs::obs_weak_source_deleter); // Check if things exist as planned. if (!_ar_texture || (_ar_texture->get_width() != _size.first) || (_ar_texture->get_height() != _size.second)) { #ifdef ENABLE_PROFILING auto prof = _profile_capture_realloc->track(); gs::debug_marker marker{gs::debug_color_allocate, "Reallocate GPU Buffer"}; #endif _ar_texture = std::make_shared(_size.first, _size.second, GS_RGBA_UNORM, uint32_t(1), nullptr, gs::texture::flags::None); _ar_texture_cuda_fresh = false; } { // Copy texture #ifdef ENABLE_PROFILING auto prof = _profile_capture_copy->track(); gs::debug_marker marker{gs::debug_color_copy, "Copy Capture", obs_source_get_name(_self)}; #endif gs_copy_texture(_ar_texture->get_object(), _rt->get_texture()->get_object()); } // Push work _async_track = streamfx::threadpool()->push( std::bind(&face_tracking_instance::async_track, this, std::placeholders::_1), data); } else { // Prevent conflicts. std::unique_lock alk{_ar_lock}; if (!_ar_loaded) return; // Try and acquire a strong source reference. std::shared_ptr data = std::static_pointer_cast(ptr); std::shared_ptr remote_work = std::shared_ptr(obs_weak_source_get_source(data->source.get()), obs::obs_source_deleter); if (!remote_work) { // If that failed, the source we are working for was deleted - abort now. return; } // Acquire GS context. gs::context gctx{}; // Update the current CUDA context for working. auto cctx = _cuda->get_context()->enter(); // Refresh any now broken buffers. if (!_ar_texture_cuda_fresh) { #ifdef ENABLE_PROFILING auto prof = _profile_ar_realloc->track(); gs::debug_marker marker{gs::debug_color_allocate, "%s: Reallocate CUDA Buffers", obs_source_get_name(_self)}; #endif // Assign new texture and allocate new memory. std::size_t pitch = _ar_texture->get_width() * 4ul; _ar_texture_cuda = std::make_shared<::nvidia::cuda::gstexture>(_ar_texture); _ar_texture_cuda_mem = std::make_shared<::nvidia::cuda::memory>(pitch * _ar_texture->get_height()); if (auto res = _ar_library->image_init(&_ar_image, static_cast(_ar_texture->get_width()), static_cast(_ar_texture->get_height()), static_cast(pitch), reinterpret_cast(_ar_texture_cuda_mem->get()), NVCV_RGBA, NVCV_U8, NVCV_INTERLEAVED, NVCV_CUDA); res != NVCV_SUCCESS) { DLOG_ERROR("<%s> Failed to allocate image for tracking.", obs_source_get_name(_self)); return; } // Reallocate transposed buffer. _ar_library->image_dealloc(&_ar_image_temp); _ar_library->image_dealloc(&_ar_image_bgr); if (auto res = _ar_library->image_alloc(&_ar_image_bgr, _ar_image.width, _ar_image.height, NVCV_BGR, NVCV_U8, NVCV_INTERLEAVED, NVCV_CUDA, 0); res != NVCV_SUCCESS) { DLOG_ERROR("<%s> Failed to allocate image for color conversion.", obs_source_get_name(_self)); return; } // Synchronize Streams. _cuda_stream->synchronize(); // Finally set the input object. if (NvCV_Status res = _ar_library->set_object(_ar_feature.get(), NvAR_Parameter_Input(Image), &_ar_image_bgr, sizeof(NvCVImage)); res != NVCV_SUCCESS) { DLOG_ERROR("<%s> Failed to update input image for tracking.", obs_source_get_name(_self)); return; } // And mark the new texture as fresh. _ar_texture_cuda_fresh = true; } { // Copy from CUDA array to CUDA device memory. #ifdef ENABLE_PROFILING auto prof = _profile_ar_copy->track(); #endif ::nvidia::cuda::memcpy2d_v2_t mc; mc.src_x_in_bytes = 0; mc.src_y = 0; mc.src_memory_type = ::nvidia::cuda::memory_type::ARRAY; mc.src_host = nullptr; mc.src_device = 0; mc.src_array = _ar_texture_cuda->map(_cuda_stream); mc.src_pitch = static_cast(_ar_image.pitch); mc.dst_x_in_bytes = 0; mc.dst_y = 0; mc.dst_memory_type = ::nvidia::cuda::memory_type::DEVICE; mc.dst_host = 0; mc.dst_device = reinterpret_cast<::nvidia::cuda::device_ptr_t>(_ar_image.pixels); mc.dst_array = 0; mc.dst_pitch = static_cast(_ar_image.pitch); mc.width_in_bytes = static_cast(_ar_image.pitch); mc.height = _ar_image.height; if (::nvidia::cuda::result res = _cuda->get_cuda()->cuMemcpy2DAsync(&mc, _cuda_stream->get()); res != ::nvidia::cuda::result::SUCCESS) { DLOG_ERROR("<%s> Failed to prepare buffers for tracking.", obs_source_get_name(_self)); return; } } { // Convert from RGBA 32-bit to BGR 24-bit. #ifdef ENABLE_PROFILING auto prof = _profile_ar_transfer->track(); #endif if (NvCV_Status res = _ar_library->image_transfer(&_ar_image, &_ar_image_bgr, 1.0, reinterpret_cast(_cuda_stream->get()), &_ar_image_temp); res != NVCV_SUCCESS) { DLOG_ERROR("<%s> Failed to convert from RGBX 32-bit to BGR 24-bit.", obs_source_get_name(_self)); return; } // Synchronize Streams. _cuda_stream->synchronize(); _cuda->get_context()->synchronize(); } { // Track any faces. #ifdef ENABLE_PROFILING auto prof = _profile_ar_run->track(); #endif if (NvCV_Status res = _ar_library->run(_ar_feature.get()); res != NVCV_SUCCESS) { DLOG_ERROR("<%s> Failed to run tracking.", obs_source_get_name(_self)); return; } } // Are we tracking anything, and confident enough in the tracking? if ((_ar_bboxes.num_boxes == 0) || (_ar_bboxes_confidence.at(0) < 0.3333)) { // If not, just return to full frame. std::unique_lock tlk{_values.lock}; _values.center[0] = .5; _values.center[1] = .5; _values.size[0] = 1.; _values.size[1] = 1.; _values.velocity[0] = 0; _values.velocity[1] = 0; } else { // If yes, begin tracking. #ifdef ENABLE_PROFILING auto prof = _profile_ar_calc->track(); #endif double_t sx = static_cast(_ar_image_bgr.width); double_t sy = static_cast(_ar_image_bgr.height); double_t aspect = double_t(sx) / double_t(sy); double_t fps = 0.; { obs_video_info ovi; obs_get_video_info(&ovi); fps = static_cast(ovi.fps_num) / static_cast(ovi.fps_den); } // Store values and center. double_t bsx = _ar_bboxes.boxes[0].width; double_t bsy = _ar_bboxes.boxes[0].height; double_t bcx = _ar_bboxes.boxes[0].x + bsx / 2.0; double_t bcy = _ar_bboxes.boxes[0].y + bsy / 2.0; // Zoom, Aspect Ratio, Offset bsy = util::math::lerp(sy, bsy, _cfg_zoom); bsy = std::clamp(bsy, 10 * aspect, static_cast(_size.second)); bsx = bsy * aspect; bcx += _ar_bboxes.boxes[0].width * _cfg_offset.first; bcy += _ar_bboxes.boxes[0].height * _cfg_offset.second; // Fit back into the frame // - Above code guarantees that height is never bigger than the height of the frame. // - Which also guarantees that width is never bigger than the width of the frame. // Only cx and cy need to be adjusted now to always be in the frame. bcx = std::clamp(bcx, (bsx / 2.), sx - (bsx / 2.)); bcy = std::clamp(bcy, (bsy / 2.), sy - (bsy / 2.)); { // Update target values. std::unique_lock tlk{_values.lock}; _values.velocity[0] = -_values.center[0]; _values.velocity[1] = -_values.center[1]; _values.center[0] = bcx / sx; _values.center[1] = bcy / sy; _values.velocity[0] += _values.center[0]; _values.velocity[1] += _values.center[1]; _values.velocity[0] *= fps; _values.velocity[1] *= fps; _values.size[0] = bsx / sx; _values.size[1] = bsy / sy; } } _async_track.reset(); // Allow new frames to be queued again. _ar_is_tracking = false; } } void face_tracking_instance::refresh_geometry() { // Update Region of Interest Geometry. auto v0 = _geometry->at(0); auto v1 = _geometry->at(1); auto v2 = _geometry->at(2); auto v3 = _geometry->at(3); vec3_set(v3.position, static_cast(_size.first), static_cast(_size.second), 0.); vec3_set(v2.position, v3.position->x, 0., 0.); vec3_set(v1.position, 0., v3.position->y, 0.); vec3_set(v0.position, 0., 0., 0.); float_t hsx = static_cast(_filters.size[0].get() / 2.); float_t hsy = static_cast(_filters.size[1].get() / 2.); vec4_set(v0.uv[0], static_cast(_filters.center[0].get() - hsx), static_cast(_filters.center[1].get() - hsy), 0., 0.); vec4_set(v1.uv[0], static_cast(_filters.center[0].get() - hsx), static_cast(_filters.center[1].get() + hsy), 0., 0.); vec4_set(v2.uv[0], static_cast(_filters.center[0].get() + hsx), static_cast(_filters.center[1].get() - hsy), 0., 0.); vec4_set(v3.uv[0], static_cast(_filters.center[0].get() + hsx), static_cast(_filters.center[1].get() + hsy), 0., 0.); _geometry->update(true); } void face_tracking_instance::refresh_region_of_interest() { std::unique_lock tlk(_values.lock); double_t kalman_q = util::math::lerp(1.0, 1e-6, _cfg_stability); double_t kalman_r = util::math::lerp(std::numeric_limits::epsilon(), 1e+2, _cfg_stability); _filters.center[0] = util::math::kalman1D{kalman_q, kalman_r, 1., _values.center[0]}; _filters.center[1] = util::math::kalman1D{kalman_q, kalman_r, 1., _values.center[1]}; _filters.size[0] = util::math::kalman1D{kalman_q, kalman_r, 1., _values.size[0]}; _filters.size[1] = util::math::kalman1D{kalman_q, kalman_r, 1., _values.size[1]}; } void face_tracking_instance::load(obs_data_t* data) { update(data); } void face_tracking_instance::migrate(obs_data_t* data, uint64_t version) {} void face_tracking_instance::update(obs_data_t* data) { _cfg_zoom = obs_data_get_double(data, SK_ROI_ZOOM) / 100.0; _cfg_offset.first = obs_data_get_double(data, SK_ROI_OFFSET_X) / 100.0; _cfg_offset.second = obs_data_get_double(data, SK_ROI_OFFSET_Y) / 100.0; _cfg_stability = obs_data_get_double(data, SK_ROI_STABILITY) / 100.0; // Refresh the Region Of Interest refresh_region_of_interest(); } void face_tracking_instance::video_tick(float_t seconds) { // If we aren't yet ready to do work, abort for now. if (!_ar_loaded) { return; } // Update the input size. if (obs_source_t* src = obs_filter_get_target(_self); src != nullptr) { _size.first = obs_source_get_base_width(src); _size.second = obs_source_get_base_height(src); } // Update filters and geometry { std::unique_lock tlk(_values.lock); _filters.center[0].filter(_values.center[0]); _filters.center[1].filter(_values.center[1]); _filters.size[0].filter(_values.size[0]); _filters.size[1].filter(_values.size[1]); _values.center[0] += _values.velocity[0] * seconds; _values.center[1] += _values.velocity[1] * seconds; } refresh_geometry(); _rt_is_fresh = false; } void face_tracking_instance::video_render(gs_effect_t*) { obs_source_t* filter_parent = obs_filter_get_parent(_self); obs_source_t* filter_target = obs_filter_get_target(_self); gs_effect_t* default_effect = obs_get_base_effect(OBS_EFFECT_DEFAULT); if (!filter_parent || !filter_target || !_size.first || !_size.second || !_ar_loaded) { obs_source_skip_video_filter(_self); return; } #ifdef ENABLE_PROFILING gs::debug_marker gdmp{gs::debug_color_source, "NVIDIA Face Tracking '%s'...", obs_source_get_name(_self)}; gs::debug_marker gdmp2{gs::debug_color_source, "... on '%s'", obs_source_get_name(obs_filter_get_parent(_self))}; #endif if (!_rt_is_fresh) { // Capture the filter stack "below" us. #ifdef ENABLE_PROFILING auto prof = _profile_capture->track(); #endif { #ifdef ENABLE_PROFILING gs::debug_marker gdm{gs::debug_color_cache, "Cache"}; #endif if (obs_source_process_filter_begin(_self, GS_RGBA, OBS_NO_DIRECT_RENDERING)) { auto op = _rt->render(_size.first, _size.second); vec4 clr = {0., 0., 0., 0.}; gs_ortho(0., 1., 0., 1., -1., 1.); gs_clear(GS_CLEAR_COLOR, &clr, 0., 0); gs_enable_color(true, true, true, true); gs_enable_blending(false); auto old_fbsrgb = gs_framebuffer_srgb_enabled(); gs_enable_framebuffer_srgb(gs_get_linear_srgb()); obs_source_process_filter_tech_end(_self, default_effect, 1, 1, "Draw"); gs_enable_framebuffer_srgb(old_fbsrgb); } else { obs_source_skip_video_filter(_self); return; } } // Probably spawn new work. async_track(nullptr); _rt_is_fresh = true; } { // Draw Texture #ifdef ENABLE_PROFILING gs::debug_marker gdm{gs::debug_color_render, "Render"}; #endif gs_effect_set_texture(gs_effect_get_param_by_name(default_effect, "image"), _rt->get_texture()->get_object()); gs_load_vertexbuffer(_geometry->update(false)); while (gs_effect_loop(default_effect, "Draw")) { gs_draw(gs_draw_mode::GS_TRISTRIP, 0, 0); } gs_load_vertexbuffer(nullptr); } } #ifdef ENABLE_PROFILING bool face_tracking_instance::button_profile(obs_properties_t* props, obs_property_t* property) { DLOG_INFO("%-22s: %-10s %-10s %-10s %-10s %-10s", "Task", "Total", "Count", "Average", "99.9%ile", "95.0%ile"); std::pair> profilers[]{ {"Capture", _profile_capture}, {"Reallocate", _profile_capture_realloc}, {"Copy", _profile_capture_copy}, {"AR Reallocate", _profile_ar_realloc}, {"AR Copy", _profile_ar_copy}, {"AR Convert", _profile_ar_transfer}, {"AR Run", _profile_ar_run}, {"AR Calculate", _profile_ar_calc}, }; for (auto& kv : profilers) { DLOG_INFO(" %-20s: %8lldµs %10lld %8lldµs %8lldµs %8lldµs", kv.first.c_str(), std::chrono::duration_cast(kv.second->total_duration()).count(), kv.second->count(), static_cast(kv.second->average_duration() / 1000.0), std::chrono::duration_cast(kv.second->percentile(0.999)).count(), std::chrono::duration_cast(kv.second->percentile(0.95)).count()); } return false; } #endif face_tracking_factory::face_tracking_factory() { // Try and load CUDA. _cuda = ::nvidia::cuda::obs::get(); // Try and load AR. _ar = std::make_shared<::nvidia::ar::ar>(); // Info _info.id = PREFIX "filter-nvidia-face-tracking"; _info.type = OBS_SOURCE_TYPE_FILTER; _info.output_flags = OBS_SOURCE_VIDEO | OBS_SOURCE_CUSTOM_DRAW; set_resolution_enabled(false); finish_setup(); register_proxy("streamfx-nvidia-face-tracking"); } face_tracking_factory::~face_tracking_factory() {} const char* face_tracking_factory::get_name() { return D_TRANSLATE(ST); } void face_tracking_factory::get_defaults2(obs_data_t* data) { obs_data_set_default_double(data, SK_ROI_ZOOM, 50.0); obs_data_set_default_double(data, SK_ROI_OFFSET_X, 0.0); obs_data_set_default_double(data, SK_ROI_OFFSET_Y, -15.0); obs_data_set_default_double(data, SK_ROI_STABILITY, 50.0); } obs_properties_t* face_tracking_factory::get_properties2(face_tracking_instance* data) { obs_properties_t* pr = obs_properties_create(); { auto grp = obs_properties_create(); obs_properties_add_group(pr, ST_ROI, D_TRANSLATE(ST_ROI), OBS_GROUP_NORMAL, grp); { auto p = obs_properties_add_float_slider(grp, SK_ROI_STABILITY, D_TRANSLATE(ST_ROI_STABILITY), 0, 100.0, 0.01); obs_property_float_set_suffix(p, " %"); } { auto p = obs_properties_add_float_slider(grp, SK_ROI_ZOOM, D_TRANSLATE(ST_ROI_ZOOM), 0, 200.0, 0.01); obs_property_float_set_suffix(p, " %"); } { auto grp2 = obs_properties_create(); obs_properties_add_group(grp, ST_ROI_OFFSET, D_TRANSLATE(ST_ROI_OFFSET), OBS_GROUP_NORMAL, grp2); { auto p = obs_properties_add_float_slider(grp2, SK_ROI_OFFSET_X, D_TRANSLATE(ST_ROI_OFFSET_X), -50.0, 50.0, 0.01); obs_property_float_set_suffix(p, " %"); } { auto p = obs_properties_add_float_slider(grp2, SK_ROI_OFFSET_Y, D_TRANSLATE(ST_ROI_OFFSET_Y), -50.0, 50.0, 0.01); obs_property_float_set_suffix(p, " %"); } } } #ifdef ENABLE_PROFILING { obs_properties_add_button2( pr, "Profile", "Profile", [](obs_properties_t* props, obs_property_t* property, void* data) { return reinterpret_cast(data)->button_profile(props, property); }, data); } #endif return pr; } std::shared_ptr<::nvidia::ar::ar> face_tracking_factory::get_ar() { return _ar; } std::shared_ptr _filter_nvidia_face_tracking_factory_instance = nullptr; void streamfx::filter::nvidia::face_tracking_factory::initialize() { try { _filter_nvidia_face_tracking_factory_instance = std::make_shared(); } catch (const std::exception& ex) { DLOG_ERROR(" %s", ex.what()); } } void streamfx::filter::nvidia::face_tracking_factory::finalize() { _filter_nvidia_face_tracking_factory_instance.reset(); } std::shared_ptr streamfx::filter::nvidia::face_tracking_factory::get() { return _filter_nvidia_face_tracking_factory_instance; }