/* * Modern effects for a modern Streamer * Copyright (C) 2018 Michael Fabian Dirks * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #pragma once #include "warning-disable.hpp" #include #include #include #include #include #include "warning-enable.hpp" extern "C" { #include "warning-disable.hpp" #include #include #include #include #include "warning-enable.hpp" } // Constants #define S_PI 3.1415926535897932384626433832795 // PI = pi #define S_PI2 6.283185307179586476925286766559 // 2PI = 2 * pi #define S_PI2_SQROOT 2.506628274631000502415765284811 // sqrt(2 * pi) #define S_RAD 57.295779513082320876798154814105 // 180/pi #define S_DEG 0.01745329251994329576923690768489 // pi/180 #define D_DEG_TO_RAD(x) (x * S_DEG) #define D_RAD_TO_DEG(x) (x * S_RAD) #define D_STR(s) #s #define D_VSTR(s) D_STR(s) namespace streamfx::util { bool inline are_property_groups_broken() { return obs_get_version() < MAKE_SEMANTIC_VERSION(24, 0, 0); } obs_property_t* obs_properties_add_tristate(obs_properties_t* props, const char* name, const char* desc); inline bool is_tristate_enabled(int64_t tristate) { return tristate == 1; } inline bool is_tristate_disabled(int64_t tristate) { return tristate == 0; } inline bool is_tristate_default(int64_t tristate) { return tristate == -1; } struct vec2a : public vec2 { // 16-byte Aligned version of vec2 static void* operator new(std::size_t count); static void* operator new[](std::size_t count); static void operator delete(void* p); static void operator delete[](void* p); }; #ifdef _MSC_VER __declspec(align(16)) #endif struct vec3a : public vec3 { // 16-byte Aligned version of vec3 static void* operator new(std::size_t count); static void* operator new[](std::size_t count); static void operator delete(void* p); static void operator delete[](void* p); }; #ifdef _MSC_VER __declspec(align(16)) #endif struct vec4a : public vec4 { // 16-byte Aligned version of vec4 static void* operator new(std::size_t count); static void* operator new[](std::size_t count); static void operator delete(void* p); static void operator delete[](void* p); }; std::pair size_from_string(std::string_view text, bool allowSquare = true); namespace math { template inline T pow(T base, T exp) { T res = 1; while (exp) { if (exp & 1) res *= base; exp >>= 1; base *= base; } return res; } // Proven by tests to be the fastest implementation on Intel and AMD CPUs. // Ranking: log10, loop < bitscan < pow // loop and log10 trade blows, usually almost identical. // loop is used for integers, log10 for anything else. template inline bool is_power_of_two(T v) { return T(1ull << uint64_t(floor(log10(T(v)) / log10(2.0)))) == v; } template inline bool is_power_of_two_loop(T v) { bool have_bit = false; for (std::size_t index = 0; index < (sizeof(T) * 8); index++) { bool cur = (v & (static_cast(1ull) << index)) != 0; if (cur) { if (have_bit) return false; have_bit = true; } } return true; } #pragma push_macro("P_IS_POWER_OF_TWO_AS_LOOP") #define P_IS_POWER_OF_TWO_AS_LOOP(x) \ template<> \ inline bool is_power_of_two(x v) \ { \ return is_power_of_two_loop(v); \ } P_IS_POWER_OF_TWO_AS_LOOP(int8_t) P_IS_POWER_OF_TWO_AS_LOOP(uint8_t) P_IS_POWER_OF_TWO_AS_LOOP(int16_t) P_IS_POWER_OF_TWO_AS_LOOP(uint16_t) P_IS_POWER_OF_TWO_AS_LOOP(int32_t) P_IS_POWER_OF_TWO_AS_LOOP(uint32_t) P_IS_POWER_OF_TWO_AS_LOOP(int64_t) P_IS_POWER_OF_TWO_AS_LOOP(uint64_t) #undef P_IS_POWER_OF_TWO_AS_LOOP #pragma pop_macro("P_IS_POWER_OF_TWO_AS_LOOP") template inline uint64_t get_power_of_two_exponent_floor(T v) { return uint64_t(floor(log10(T(v)) / log10(2.0))); } template inline uint64_t get_power_of_two_exponent_ceil(T v) { return uint64_t(ceil(log10(T(v)) / log10(2.0))); } template inline bool is_equal(T target, C value) { return (target > (value - std::numeric_limits::epsilon())) && (target < (value + std::numeric_limits::epsilon())); } template inline bool is_close(T target, T value, T delta) { return (target > (value - delta)) && (target < (value + delta)); } template inline std::vector pascal_triangle(size_t n) { std::vector line; line.push_back(1); for (uint64_t k = 0; k < n; k++) { T v = static_cast(line.at(k) * static_cast(n - k) / static_cast(k + 1)); line.push_back(v); } return line; } template inline T gaussian(T x, T o /*, T u = 0*/) { // u/µ can be simulated by subtracting that value from x. //static const double_t pi = 3.1415926535897932384626433832795; //static const double_t two_pi = pi * 2.; static const double_t two_pi_sqroot = 2.506628274631000502415765284811; //sqrt(two_pi); if (is_equal(0, o)) { return T(std::numeric_limits::infinity()); } // g(x) = (1 / o√(2Π)) * e(-(1/2) * ((x-u)/o)²) double_t left_e = 1. / (o * two_pi_sqroot); double_t mid_right_e = ((x /* - u*/) / o); double_t right_e = -0.5 * mid_right_e * mid_right_e; double_t final = left_e * exp(right_e); return T(final); } template inline T lerp(T a, T b, double_t v) { return static_cast((static_cast(a) * (1.0 - v)) + (static_cast(b) * v)); } template class kalman1D { T _q_process_noise_covariance; T _r_measurement_noise_covariance; T _x_value_of_interest; T _p_estimation_error_covariance; T _k_kalman_gain; public: kalman1D() : _q_process_noise_covariance(0), _r_measurement_noise_covariance(0), _x_value_of_interest(0), _p_estimation_error_covariance(0), _k_kalman_gain(0.0) {} kalman1D(T pnc, T mnc, T eec, T value) : _q_process_noise_covariance(pnc), _r_measurement_noise_covariance(mnc), _x_value_of_interest(value), _p_estimation_error_covariance(eec), _k_kalman_gain(0.0) {} ~kalman1D() = default; T filter(T measurement) { _p_estimation_error_covariance += _q_process_noise_covariance; _k_kalman_gain = _p_estimation_error_covariance / (_p_estimation_error_covariance + _r_measurement_noise_covariance); _x_value_of_interest += _k_kalman_gain * (measurement - _x_value_of_interest); _p_estimation_error_covariance = (1 - _k_kalman_gain) * _p_estimation_error_covariance; return _x_value_of_interest; } T get() { return _x_value_of_interest; } }; } // namespace math inline std::size_t aligned_offset(std::size_t align, std::size_t pos) { return ((pos / align) + 1) * align; } void* malloc_aligned(std::size_t align, std::size_t size); void free_aligned(void* mem); } // namespace streamfx::util