/* * Modern effects for a modern Streamer * Copyright (C) 2017 Michael Fabian Dirks * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #pragma once #include #include #include #include // OBS #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable : 4201) #endif #include #include #include #ifdef _MSC_VER #pragma warning(pop) #endif // Constants #define S_PI 3.1415926535897932384626433832795 // PI = pi #define S_PI2 6.283185307179586476925286766559 // 2PI = 2 * pi #define S_PI2_SQROOT 2.506628274631000502415765284811 // sqrt(2 * pi) #define S_RAD 57.295779513082320876798154814105 // 180/pi #define S_DEG 0.01745329251994329576923690768489 // pi/180 #define D_DEG_TO_RAD(x) (x * S_DEG) #define D_RAD_TO_DEG(x) (x * S_RAD) inline size_t GetNearestPowerOfTwoAbove(size_t v) { return 1ull << size_t(ceil(log10(double(v)) / log10(2.0))); } inline size_t GetNearestPowerOfTwoBelow(size_t v) { return 1ull << size_t(floor(log10(double(v)) / log10(2.0))); } namespace util { struct vec2a : public vec2 { // 16-byte Aligned version of vec2 static void* operator new(size_t count); static void* operator new[](size_t count); static void operator delete(void* p); static void operator delete[](void* p); }; #ifdef _MSC_VER __declspec(align(16)) #endif struct vec3a : public vec3 { // 16-byte Aligned version of vec3 static void* operator new(size_t count); static void* operator new[](size_t count); static void operator delete(void* p); static void operator delete[](void* p); }; #ifdef _MSC_VER __declspec(align(16)) #endif struct vec4a : public vec4 { // 16-byte Aligned version of vec4 static void* operator new(size_t count); static void* operator new[](size_t count); static void operator delete(void* p); static void operator delete[](void* p); }; std::pair SizeFromString(std::string text, bool allowSquare = true); namespace math { // Proven by tests to be the fastest implementation on Intel and AMD CPUs. // Ranking: log10, loop < bitscan < pow // loop and log10 trade blows, usually almost identical. // loop is used for integers, log10 for anything else. template inline bool is_power_of_two(T v) { return T(1ull << uint64_t(floor(log10(T(v)) / log10(2.0)))) == v; }; template inline bool is_power_of_two_loop(T v) { bool have_bit = false; for (size_t index = 0; index < (sizeof(T) * 8); index++) { bool cur = (v & (static_cast(1ull) << index)) != 0; if (cur) { if (have_bit) return false; have_bit = true; } } return true; } #pragma push_macro("P_IS_POWER_OF_TWO_AS_LOOP") #define P_IS_POWER_OF_TWO_AS_LOOP(x) \ template<> \ inline bool is_power_of_two(x v) \ { \ return is_power_of_two_loop(v); \ } P_IS_POWER_OF_TWO_AS_LOOP(int8_t); P_IS_POWER_OF_TWO_AS_LOOP(uint8_t); P_IS_POWER_OF_TWO_AS_LOOP(int16_t); P_IS_POWER_OF_TWO_AS_LOOP(uint16_t); P_IS_POWER_OF_TWO_AS_LOOP(int32_t); P_IS_POWER_OF_TWO_AS_LOOP(uint32_t); P_IS_POWER_OF_TWO_AS_LOOP(int64_t); P_IS_POWER_OF_TWO_AS_LOOP(uint64_t); #undef P_IS_POWER_OF_TWO_AS_LOOP #pragma pop_macro("P_IS_POWER_OF_TWO_AS_LOOP") template inline uint64_t get_power_of_two_exponent_floor(T v) { return uint64_t(floor(log10(T(v)) / log10(2.0))); } template inline uint64_t get_power_of_two_exponent_ceil(T v) { return uint64_t(ceil(log10(T(v)) / log10(2.0))); } template inline bool is_equal(T target, C value) { return (target > (value - std::numeric_limits::epsilon())) && (target < (value + std::numeric_limits::epsilon())); } template inline T gaussian(T x, T o /*, T u = 0*/) { // u/µ can be simulated by subtracting that value from x. static const double_t pi = 3.1415926535897932384626433832795; static const double_t two_pi = pi * 2.; static const double_t two_pi_sqroot = 2.506628274631000502415765284811; //sqrt(two_pi); if (is_equal(0, o)) { return T(std::numeric_limits::infinity()); } // g(x) = (1 / o√(2Π)) * e(-(1/2) * ((x-u)/o)²) double_t left_e = 1. / (o * two_pi_sqroot); double_t mid_right_e = ((x /* - u*/) / o); double_t right_e = -0.5 * mid_right_e * mid_right_e; double_t final = left_e * exp(right_e); return T(final); } } // namespace math } // namespace util