utility: Merge util-math and util-memory

This commit is contained in:
Michael Fabian 'Xaymar' Dirks 2020-01-14 01:11:08 +01:00
parent 1987bfb853
commit ebc50dcefe
10 changed files with 375 additions and 424 deletions

View file

@ -339,10 +339,6 @@ set(PROJECT_PRIVATE_SOURCE
"${PROJECT_SOURCE_DIR}/source/utility.cpp" "${PROJECT_SOURCE_DIR}/source/utility.cpp"
"${PROJECT_SOURCE_DIR}/source/util-event.hpp" "${PROJECT_SOURCE_DIR}/source/util-event.hpp"
"${PROJECT_SOURCE_DIR}/source/util-event.cpp" "${PROJECT_SOURCE_DIR}/source/util-event.cpp"
"${PROJECT_SOURCE_DIR}/source/util-math.hpp"
"${PROJECT_SOURCE_DIR}/source/util-math.cpp"
"${PROJECT_SOURCE_DIR}/source/util-memory.hpp"
"${PROJECT_SOURCE_DIR}/source/util-memory.cpp"
# Graphics # Graphics
"${PROJECT_SOURCE_DIR}/source/gfx/gfx-source-texture.hpp" "${PROJECT_SOURCE_DIR}/source/gfx/gfx-source-texture.hpp"

View file

@ -19,7 +19,7 @@
#include "gs-vertex.hpp" #include "gs-vertex.hpp"
#include <stdexcept> #include <stdexcept>
#include "util-memory.hpp" #include "utility.hpp"
gs::vertex::vertex() gs::vertex::vertex()
: position(nullptr), normal(nullptr), tangent(nullptr), color(nullptr), _has_store(true), _store(nullptr) : position(nullptr), normal(nullptr), tangent(nullptr), color(nullptr), _has_store(true), _store(nullptr)

View file

@ -20,7 +20,7 @@
#include "gs-vertexbuffer.hpp" #include "gs-vertexbuffer.hpp"
#include <stdexcept> #include <stdexcept>
#include "obs/gs/gs-helper.hpp" #include "obs/gs/gs-helper.hpp"
#include "util-memory.hpp" #include "utility.hpp"
// OBS // OBS
#ifdef _MSC_VER #ifdef _MSC_VER

View file

@ -21,8 +21,7 @@
#include <cinttypes> #include <cinttypes>
#include "gs-limits.hpp" #include "gs-limits.hpp"
#include "gs-vertex.hpp" #include "gs-vertex.hpp"
#include "util-math.hpp" #include "utility.hpp"
#include "util-memory.hpp"
// OBS // OBS
#ifdef _MSC_VER #ifdef _MSC_VER

View file

@ -1,124 +0,0 @@
/*
* Modern effects for a modern Streamer
* Copyright (C) 2017 Michael Fabian Dirks
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "util-math.hpp"
#include <cctype>
#include <cstdlib>
#include <stdexcept>
#include "util-memory.hpp"
void* util::vec2a::operator new(size_t count)
{
return util::malloc_aligned(16, count);
}
void* util::vec2a::operator new[](size_t count)
{
return util::malloc_aligned(16, count);
}
void util::vec2a::operator delete(void* p)
{
util::free_aligned(p);
}
void util::vec2a::operator delete[](void* p)
{
util::free_aligned(p);
}
void* util::vec3a::operator new(size_t count)
{
return util::malloc_aligned(16, count);
}
void* util::vec3a::operator new[](size_t count)
{
return util::malloc_aligned(16, count);
}
void util::vec3a::operator delete(void* p)
{
util::free_aligned(p);
}
void util::vec3a::operator delete[](void* p)
{
util::free_aligned(p);
}
void* util::vec4a::operator new(size_t count)
{
return util::malloc_aligned(16, count);
}
void* util::vec4a::operator new[](size_t count)
{
return util::malloc_aligned(16, count);
}
void util::vec4a::operator delete(void* p)
{
util::free_aligned(p);
}
void util::vec4a::operator delete[](void* p)
{
util::free_aligned(p);
}
std::pair<int64_t, int64_t> util::size_from_string(std::string text, bool allowSquare)
{
int64_t width, height;
const char* begin = text.c_str();
const char* end = text.c_str() + text.size() + 1;
char* here = const_cast<char*>(end);
long long res = strtoll(begin, &here, 0);
if (errno == ERANGE) {
return {0, 0};
}
width = res;
while (here != end) {
if (isdigit(*here) || (*here == '-') || (*here == '+')) {
break;
}
here++;
}
if (here == end) {
// Are we allowed to return a square?
if (allowSquare) {
// Yes: Return width,width.
return {width, width};
} else {
// No: Return width,0.
return {width, 0};
}
}
res = strtoll(here, nullptr, 0);
if (errno == ERANGE) {
return {width, 0};
}
height = res;
return {width, height};
}

View file

@ -23,153 +23,8 @@
#include <string> #include <string>
#include <utility> #include <utility>
// OBS
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4201)
#endif
#include <graphics/vec2.h>
#include <graphics/vec3.h>
#include <graphics/vec4.h>
#ifdef _MSC_VER
#pragma warning(pop)
#endif
// Constants
#define S_PI 3.1415926535897932384626433832795 // PI = pi
#define S_PI2 6.283185307179586476925286766559 // 2PI = 2 * pi
#define S_PI2_SQROOT 2.506628274631000502415765284811 // sqrt(2 * pi)
#define S_RAD 57.295779513082320876798154814105 // 180/pi
#define S_DEG 0.01745329251994329576923690768489 // pi/180
#define D_DEG_TO_RAD(x) (x * S_DEG)
#define D_RAD_TO_DEG(x) (x * S_RAD)
inline size_t GetNearestPowerOfTwoAbove(size_t v)
{
return 1ull << size_t(ceil(log10(double(v)) / log10(2.0)));
}
inline size_t GetNearestPowerOfTwoBelow(size_t v)
{
return 1ull << size_t(floor(log10(double(v)) / log10(2.0)));
}
namespace util { namespace util {
struct vec2a : public vec2 {
// 16-byte Aligned version of vec2
static void* operator new(size_t count);
static void* operator new[](size_t count);
static void operator delete(void* p);
static void operator delete[](void* p);
};
#ifdef _MSC_VER
__declspec(align(16))
#endif
struct vec3a : public vec3 {
// 16-byte Aligned version of vec3
static void* operator new(size_t count);
static void* operator new[](size_t count);
static void operator delete(void* p);
static void operator delete[](void* p);
};
#ifdef _MSC_VER
__declspec(align(16))
#endif
struct vec4a : public vec4 {
// 16-byte Aligned version of vec4
static void* operator new(size_t count);
static void* operator new[](size_t count);
static void operator delete(void* p);
static void operator delete[](void* p);
};
std::pair<int64_t, int64_t> size_from_string(std::string text, bool allowSquare = true);
namespace math {
// Proven by tests to be the fastest implementation on Intel and AMD CPUs.
// Ranking: log10, loop < bitscan < pow
// loop and log10 trade blows, usually almost identical.
// loop is used for integers, log10 for anything else.
template<typename T>
inline bool is_power_of_two(T v)
{
return T(1ull << uint64_t(floor(log10(T(v)) / log10(2.0)))) == v;
};
template<typename T>
inline bool is_power_of_two_loop(T v)
{
bool have_bit = false;
for (size_t index = 0; index < (sizeof(T) * 8); index++) {
bool cur = (v & (static_cast<T>(1ull) << index)) != 0;
if (cur) {
if (have_bit)
return false;
have_bit = true;
}
}
return true;
}
#pragma push_macro("P_IS_POWER_OF_TWO_AS_LOOP")
#define P_IS_POWER_OF_TWO_AS_LOOP(x) \
template<> \
inline bool is_power_of_two(x v) \
{ \
return is_power_of_two_loop(v); \
}
P_IS_POWER_OF_TWO_AS_LOOP(int8_t);
P_IS_POWER_OF_TWO_AS_LOOP(uint8_t);
P_IS_POWER_OF_TWO_AS_LOOP(int16_t);
P_IS_POWER_OF_TWO_AS_LOOP(uint16_t);
P_IS_POWER_OF_TWO_AS_LOOP(int32_t);
P_IS_POWER_OF_TWO_AS_LOOP(uint32_t);
P_IS_POWER_OF_TWO_AS_LOOP(int64_t);
P_IS_POWER_OF_TWO_AS_LOOP(uint64_t);
#undef P_IS_POWER_OF_TWO_AS_LOOP
#pragma pop_macro("P_IS_POWER_OF_TWO_AS_LOOP")
template<typename T>
inline uint64_t get_power_of_two_exponent_floor(T v)
{
return uint64_t(floor(log10(T(v)) / log10(2.0)));
}
template<typename T>
inline uint64_t get_power_of_two_exponent_ceil(T v)
{
return uint64_t(ceil(log10(T(v)) / log10(2.0)));
}
template<typename T, typename C>
inline bool is_equal(T target, C value)
{
return (target > (value - std::numeric_limits<T>::epsilon()))
&& (target < (value + std::numeric_limits<T>::epsilon()));
}
template<typename T>
inline T gaussian(T x, T o /*, T u = 0*/)
{
// u/µ can be simulated by subtracting that value from x.
static const double_t pi = 3.1415926535897932384626433832795;
static const double_t two_pi = pi * 2.;
static const double_t two_pi_sqroot = 2.506628274631000502415765284811; //sqrt(two_pi);
if (is_equal<double_t>(0, o)) {
return T(std::numeric_limits<double_t>::infinity());
}
// g(x) = (1 / o√(2Π)) * e(-(1/2) * ((x-u)/o)²)
double_t left_e = 1. / (o * two_pi_sqroot);
double_t mid_right_e = ((x /* - u*/) / o);
double_t right_e = -0.5 * mid_right_e * mid_right_e;
double_t final = left_e * exp(right_e);
return T(final);
}
} // namespace math
} // namespace util } // namespace util

View file

@ -29,39 +29,3 @@
#endif #endif
using namespace std; using namespace std;
void* util::malloc_aligned(size_t align, size_t size)
{
#ifdef USE_MSC_ALLOC
return _aligned_malloc(size, align);
#elif defined(USE_STD_ALLOC)
return aligned_alloc(size, align);
#else
// Ensure that we have space for the pointer and the data.
size_t asize = aligned_offset(align, size + (sizeof(void*) * 2));
// Allocate memory and store integer representation of pointer.
void* ptr = malloc(asize);
// Calculate actual aligned position
intptr_t ptr_off = static_cast<intptr_t>(aligned_offset(align, reinterpret_cast<size_t>(ptr) + sizeof(void*)));
// Store actual pointer at ptr_off - sizeof(void*).
*reinterpret_cast<intptr_t*>(ptr_off - sizeof(void*)) = reinterpret_cast<intptr_t>(ptr);
// Return aligned pointer
return reinterpret_cast<void*>(ptr_off);
#endif
}
void util::free_aligned(void* mem)
{
#ifdef USE_MSC_ALLOC
_aligned_free(mem);
#elif defined(USE_STD_ALLOC_FREE)
free(mem);
#else
void* ptr = reinterpret_cast<void*>(*reinterpret_cast<intptr_t*>(static_cast<char*>(mem) - sizeof(void*)));
free(ptr);
#endif
}

View file

@ -1,111 +0,0 @@
/*
* Modern effects for a modern Streamer
* Copyright (C) 2017 Michael Fabian Dirks
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#pragma once
#include <cstdlib>
namespace util {
inline size_t aligned_offset(size_t align, size_t pos)
{
return ((pos / align) + 1) * align;
}
void* malloc_aligned(size_t align, size_t size);
void free_aligned(void* mem);
template<typename T, size_t N = 16>
class AlignmentAllocator {
public:
typedef T value_type;
typedef size_t size_type;
#ifdef __clang__
typedef ptrdiff_t difference_type;
#else
typedef std::ptrdiff_t difference_type;
#endif
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
public:
inline AlignmentAllocator() {}
template<typename T2>
inline AlignmentAllocator(const AlignmentAllocator<T2, N>&)
{}
inline ~AlignmentAllocator() {}
inline pointer adress(reference r)
{
return &r;
}
inline const_pointer adress(const_reference r) const
{
return &r;
}
inline pointer allocate(size_type n)
{
return (pointer)malloc_aligned(n * sizeof(value_type), N);
}
inline void deallocate(pointer p, size_type)
{
free_aligned(p);
}
inline void construct(pointer p, const value_type& wert)
{
new (p) value_type(wert);
}
inline void destroy(pointer p)
{
p->~value_type();
p;
}
inline size_type max_size() const
{
return size_type(-1) / sizeof(value_type);
}
template<typename T2>
struct rebind {
typedef AlignmentAllocator<T2, N> other;
};
bool operator!=(const AlignmentAllocator<T, N>& other) const
{
return !(*this == other);
}
// Returns true if and only if storage allocated from *this
// can be deallocated from other, and vice versa.
// Always returns true for stateless allocators.
bool operator==(const AlignmentAllocator<T, N>&) const
{
return true;
}
};
}; // namespace util

View file

@ -92,3 +92,139 @@ obs_property_t* util::obs_properties_add_tristate(obs_properties_t* props, const
obs_property_list_add_int(p, D_TRANSLATE(S_STATE_ENABLED), 1); obs_property_list_add_int(p, D_TRANSLATE(S_STATE_ENABLED), 1);
return p; return p;
} }
void* util::vec2a::operator new(size_t count)
{
return util::malloc_aligned(16, count);
}
void* util::vec2a::operator new[](size_t count)
{
return util::malloc_aligned(16, count);
}
void util::vec2a::operator delete(void* p)
{
util::free_aligned(p);
}
void util::vec2a::operator delete[](void* p)
{
util::free_aligned(p);
}
void* util::vec3a::operator new(size_t count)
{
return util::malloc_aligned(16, count);
}
void* util::vec3a::operator new[](size_t count)
{
return util::malloc_aligned(16, count);
}
void util::vec3a::operator delete(void* p)
{
util::free_aligned(p);
}
void util::vec3a::operator delete[](void* p)
{
util::free_aligned(p);
}
void* util::vec4a::operator new(size_t count)
{
return util::malloc_aligned(16, count);
}
void* util::vec4a::operator new[](size_t count)
{
return util::malloc_aligned(16, count);
}
void util::vec4a::operator delete(void* p)
{
util::free_aligned(p);
}
void util::vec4a::operator delete[](void* p)
{
util::free_aligned(p);
}
std::pair<int64_t, int64_t> util::size_from_string(std::string text, bool allowSquare)
{
int64_t width, height;
const char* begin = text.c_str();
const char* end = text.c_str() + text.size() + 1;
char* here = const_cast<char*>(end);
long long res = strtoll(begin, &here, 0);
if (errno == ERANGE) {
return {0, 0};
}
width = res;
while (here != end) {
if (isdigit(*here) || (*here == '-') || (*here == '+')) {
break;
}
here++;
}
if (here == end) {
// Are we allowed to return a square?
if (allowSquare) {
// Yes: Return width,width.
return {width, width};
} else {
// No: Return width,0.
return {width, 0};
}
}
res = strtoll(here, nullptr, 0);
if (errno == ERANGE) {
return {width, 0};
}
height = res;
return {width, height};
}
void* util::malloc_aligned(size_t align, size_t size)
{
#ifdef USE_MSC_ALLOC
return _aligned_malloc(size, align);
#elif defined(USE_STD_ALLOC)
return aligned_alloc(size, align);
#else
// Ensure that we have space for the pointer and the data.
size_t asize = aligned_offset(align, size + (sizeof(void*) * 2));
// Allocate memory and store integer representation of pointer.
void* ptr = malloc(asize);
// Calculate actual aligned position
intptr_t ptr_off = static_cast<intptr_t>(aligned_offset(align, reinterpret_cast<size_t>(ptr) + sizeof(void*)));
// Store actual pointer at ptr_off - sizeof(void*).
*reinterpret_cast<intptr_t*>(ptr_off - sizeof(void*)) = reinterpret_cast<intptr_t>(ptr);
// Return aligned pointer
return reinterpret_cast<void*>(ptr_off);
#endif
}
void util::free_aligned(void* mem)
{
#ifdef USE_MSC_ALLOC
_aligned_free(mem);
#elif defined(USE_STD_ALLOC_FREE)
free(mem);
#else
void* ptr = reinterpret_cast<void*>(*reinterpret_cast<intptr_t*>(static_cast<char*>(mem) - sizeof(void*)));
free(ptr);
#endif
}

View file

@ -20,13 +20,34 @@
#pragma once #pragma once
#include <cinttypes> #include <cinttypes>
#include <limits> #include <limits>
#include <string>
#include <type_traits> #include <type_traits>
#include <utility>
extern "C" { extern "C" {
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4201)
#endif
#include <graphics/vec2.h>
#include <graphics/vec3.h>
#include <graphics/vec4.h>
#include <obs-config.h> #include <obs-config.h>
#include <obs.h> #include <obs.h>
#ifdef _MSC_VER
#pragma warning(pop)
#endif
} }
// Constants
#define S_PI 3.1415926535897932384626433832795 // PI = pi
#define S_PI2 6.283185307179586476925286766559 // 2PI = 2 * pi
#define S_PI2_SQROOT 2.506628274631000502415765284811 // sqrt(2 * pi)
#define S_RAD 57.295779513082320876798154814105 // 180/pi
#define S_DEG 0.01745329251994329576923690768489 // pi/180
#define D_DEG_TO_RAD(x) (x * S_DEG)
#define D_RAD_TO_DEG(x) (x * S_RAD)
const char* obs_module_recursive_text(const char* to_translate, size_t depth = std::numeric_limits<size_t>::max()); const char* obs_module_recursive_text(const char* to_translate, size_t depth = std::numeric_limits<size_t>::max());
template<typename Enum> template<typename Enum>
@ -123,4 +144,219 @@ namespace util {
uint8_t b; uint8_t b;
}; };
} argb32; } argb32;
struct vec2a : public vec2 {
// 16-byte Aligned version of vec2
static void* operator new(size_t count);
static void* operator new[](size_t count);
static void operator delete(void* p);
static void operator delete[](void* p);
};
#ifdef _MSC_VER
__declspec(align(16))
#endif
struct vec3a : public vec3 {
// 16-byte Aligned version of vec3
static void* operator new(size_t count);
static void* operator new[](size_t count);
static void operator delete(void* p);
static void operator delete[](void* p);
};
#ifdef _MSC_VER
__declspec(align(16))
#endif
struct vec4a : public vec4 {
// 16-byte Aligned version of vec4
static void* operator new(size_t count);
static void* operator new[](size_t count);
static void operator delete(void* p);
static void operator delete[](void* p);
};
inline size_t GetNearestPowerOfTwoAbove(size_t v)
{
return 1ull << size_t(ceil(log10(double(v)) / log10(2.0)));
}
inline size_t GetNearestPowerOfTwoBelow(size_t v)
{
return 1ull << size_t(floor(log10(double(v)) / log10(2.0)));
}
std::pair<int64_t, int64_t> size_from_string(std::string text, bool allowSquare = true);
namespace math {
// Proven by tests to be the fastest implementation on Intel and AMD CPUs.
// Ranking: log10, loop < bitscan < pow
// loop and log10 trade blows, usually almost identical.
// loop is used for integers, log10 for anything else.
template<typename T>
inline bool is_power_of_two(T v)
{
return T(1ull << uint64_t(floor(log10(T(v)) / log10(2.0)))) == v;
};
template<typename T>
inline bool is_power_of_two_loop(T v)
{
bool have_bit = false;
for (size_t index = 0; index < (sizeof(T) * 8); index++) {
bool cur = (v & (static_cast<T>(1ull) << index)) != 0;
if (cur) {
if (have_bit)
return false;
have_bit = true;
}
}
return true;
}
#pragma push_macro("P_IS_POWER_OF_TWO_AS_LOOP")
#define P_IS_POWER_OF_TWO_AS_LOOP(x) \
template<> \
inline bool is_power_of_two(x v) \
{ \
return is_power_of_two_loop(v); \
}
P_IS_POWER_OF_TWO_AS_LOOP(int8_t);
P_IS_POWER_OF_TWO_AS_LOOP(uint8_t);
P_IS_POWER_OF_TWO_AS_LOOP(int16_t);
P_IS_POWER_OF_TWO_AS_LOOP(uint16_t);
P_IS_POWER_OF_TWO_AS_LOOP(int32_t);
P_IS_POWER_OF_TWO_AS_LOOP(uint32_t);
P_IS_POWER_OF_TWO_AS_LOOP(int64_t);
P_IS_POWER_OF_TWO_AS_LOOP(uint64_t);
#undef P_IS_POWER_OF_TWO_AS_LOOP
#pragma pop_macro("P_IS_POWER_OF_TWO_AS_LOOP")
template<typename T>
inline uint64_t get_power_of_two_exponent_floor(T v)
{
return uint64_t(floor(log10(T(v)) / log10(2.0)));
}
template<typename T>
inline uint64_t get_power_of_two_exponent_ceil(T v)
{
return uint64_t(ceil(log10(T(v)) / log10(2.0)));
}
template<typename T, typename C>
inline bool is_equal(T target, C value)
{
return (target > (value - std::numeric_limits<T>::epsilon()))
&& (target < (value + std::numeric_limits<T>::epsilon()));
}
template<typename T>
inline T gaussian(T x, T o /*, T u = 0*/)
{
// u/µ can be simulated by subtracting that value from x.
static const double_t pi = 3.1415926535897932384626433832795;
static const double_t two_pi = pi * 2.;
static const double_t two_pi_sqroot = 2.506628274631000502415765284811; //sqrt(two_pi);
if (is_equal<double_t>(0, o)) {
return T(std::numeric_limits<double_t>::infinity());
}
// g(x) = (1 / o√(2Π)) * e(-(1/2) * ((x-u)/o)²)
double_t left_e = 1. / (o * two_pi_sqroot);
double_t mid_right_e = ((x /* - u*/) / o);
double_t right_e = -0.5 * mid_right_e * mid_right_e;
double_t final = left_e * exp(right_e);
return T(final);
}
} // namespace math
inline size_t aligned_offset(size_t align, size_t pos)
{
return ((pos / align) + 1) * align;
}
void* malloc_aligned(size_t align, size_t size);
void free_aligned(void* mem);
template<typename T, size_t N = 16>
class AlignmentAllocator {
public:
typedef T value_type;
typedef size_t size_type;
#ifdef __clang__
typedef ptrdiff_t difference_type;
#else
typedef std::ptrdiff_t difference_type;
#endif
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
public:
inline AlignmentAllocator() {}
template<typename T2>
inline AlignmentAllocator(const AlignmentAllocator<T2, N>&)
{}
inline ~AlignmentAllocator() {}
inline pointer adress(reference r)
{
return &r;
}
inline const_pointer adress(const_reference r) const
{
return &r;
}
inline pointer allocate(size_type n)
{
return (pointer)malloc_aligned(n * sizeof(value_type), N);
}
inline void deallocate(pointer p, size_type)
{
free_aligned(p);
}
inline void construct(pointer p, const value_type& wert)
{
new (p) value_type(wert);
}
inline void destroy(pointer p)
{
p->~value_type();
p;
}
inline size_type max_size() const
{
return size_type(-1) / sizeof(value_type);
}
template<typename T2>
struct rebind {
typedef AlignmentAllocator<T2, N> other;
};
bool operator!=(const AlignmentAllocator<T, N>& other) const
{
return !(*this == other);
}
// Returns true if and only if storage allocated from *this
// can be deallocated from other, and vice versa.
// Always returns true for stateless allocators.
bool operator==(const AlignmentAllocator<T, N>&) const
{
return true;
}
};
} // namespace util } // namespace util