obs-StreamFX/source/util/utility.hpp

240 lines
7 KiB
C++
Raw Normal View History

/*
* Modern effects for a modern Streamer
* Copyright (C) 2018 Michael Fabian Dirks
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#pragma once
#include <cinttypes>
#include <cstddef>
#include <string>
#include <type_traits>
2019-08-02 21:47:32 +00:00
extern "C" {
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4201)
#endif
#include <obs.h>
#include <graphics/vec2.h>
#include <graphics/vec3.h>
#include <graphics/vec4.h>
#ifdef _MSC_VER
#pragma warning(pop)
#endif
2019-08-02 21:47:32 +00:00
}
// Constants
#define S_PI 3.1415926535897932384626433832795 // PI = pi
#define S_PI2 6.283185307179586476925286766559 // 2PI = 2 * pi
#define S_PI2_SQROOT 2.506628274631000502415765284811 // sqrt(2 * pi)
#define S_RAD 57.295779513082320876798154814105 // 180/pi
#define S_DEG 0.01745329251994329576923690768489 // pi/180
#define D_DEG_TO_RAD(x) (x * S_DEG)
#define D_RAD_TO_DEG(x) (x * S_RAD)
2019-08-02 21:47:32 +00:00
#define D_STR(s) #s
#define D_VSTR(s) D_STR(s)
2021-06-08 02:18:02 +00:00
namespace streamfx::util {
2019-08-02 21:47:32 +00:00
bool inline are_property_groups_broken()
{
return obs_get_version() < MAKE_SEMANTIC_VERSION(24, 0, 0);
}
2020-01-13 21:40:15 +00:00
obs_property_t* obs_properties_add_tristate(obs_properties_t* props, const char* name, const char* desc);
inline bool is_tristate_enabled(int64_t tristate)
2020-01-13 21:40:15 +00:00
{
return tristate == 1;
}
inline bool is_tristate_disabled(int64_t tristate)
2020-01-13 21:40:15 +00:00
{
return tristate == 0;
}
inline bool is_tristate_default(int64_t tristate)
2020-01-13 21:40:15 +00:00
{
return tristate == -1;
}
struct vec2a : public vec2 {
// 16-byte Aligned version of vec2
2020-04-08 21:38:42 +00:00
static void* operator new(std::size_t count);
static void* operator new[](std::size_t count);
static void operator delete(void* p);
static void operator delete[](void* p);
};
#ifdef _MSC_VER
__declspec(align(16))
#endif
struct vec3a : public vec3 {
// 16-byte Aligned version of vec3
2020-04-08 21:38:42 +00:00
static void* operator new(std::size_t count);
static void* operator new[](std::size_t count);
static void operator delete(void* p);
static void operator delete[](void* p);
};
#ifdef _MSC_VER
__declspec(align(16))
#endif
struct vec4a : public vec4 {
// 16-byte Aligned version of vec4
2020-04-08 21:38:42 +00:00
static void* operator new(std::size_t count);
static void* operator new[](std::size_t count);
static void operator delete(void* p);
static void operator delete[](void* p);
};
std::pair<int64_t, int64_t> size_from_string(std::string text, bool allowSquare = true);
namespace math {
// Proven by tests to be the fastest implementation on Intel and AMD CPUs.
// Ranking: log10, loop < bitscan < pow
// loop and log10 trade blows, usually almost identical.
// loop is used for integers, log10 for anything else.
template<typename T>
inline bool is_power_of_two(T v)
{
return T(1ull << uint64_t(floor(log10(T(v)) / log10(2.0)))) == v;
2020-04-08 21:38:42 +00:00
}
template<typename T>
inline bool is_power_of_two_loop(T v)
{
bool have_bit = false;
2020-04-08 21:38:42 +00:00
for (std::size_t index = 0; index < (sizeof(T) * 8); index++) {
bool cur = (v & (static_cast<T>(1ull) << index)) != 0;
if (cur) {
if (have_bit)
return false;
have_bit = true;
}
}
return true;
}
#pragma push_macro("P_IS_POWER_OF_TWO_AS_LOOP")
#define P_IS_POWER_OF_TWO_AS_LOOP(x) \
template<> \
inline bool is_power_of_two(x v) \
{ \
return is_power_of_two_loop(v); \
}
P_IS_POWER_OF_TWO_AS_LOOP(int8_t)
P_IS_POWER_OF_TWO_AS_LOOP(uint8_t)
P_IS_POWER_OF_TWO_AS_LOOP(int16_t)
P_IS_POWER_OF_TWO_AS_LOOP(uint16_t)
P_IS_POWER_OF_TWO_AS_LOOP(int32_t)
P_IS_POWER_OF_TWO_AS_LOOP(uint32_t)
P_IS_POWER_OF_TWO_AS_LOOP(int64_t)
P_IS_POWER_OF_TWO_AS_LOOP(uint64_t)
#undef P_IS_POWER_OF_TWO_AS_LOOP
#pragma pop_macro("P_IS_POWER_OF_TWO_AS_LOOP")
template<typename T>
inline uint64_t get_power_of_two_exponent_floor(T v)
{
return uint64_t(floor(log10(T(v)) / log10(2.0)));
}
template<typename T>
inline uint64_t get_power_of_two_exponent_ceil(T v)
{
return uint64_t(ceil(log10(T(v)) / log10(2.0)));
}
template<typename T, typename C>
inline bool is_equal(T target, C value)
{
return (target > (value - std::numeric_limits<T>::epsilon()))
&& (target < (value + std::numeric_limits<T>::epsilon()));
}
template<typename T>
inline T gaussian(T x, T o /*, T u = 0*/)
{
// u/µ can be simulated by subtracting that value from x.
2020-04-08 21:38:42 +00:00
//static const double_t pi = 3.1415926535897932384626433832795;
//static const double_t two_pi = pi * 2.;
static const double_t two_pi_sqroot = 2.506628274631000502415765284811; //sqrt(two_pi);
if (is_equal<double_t>(0, o)) {
return T(std::numeric_limits<double_t>::infinity());
}
// g(x) = (1 / o√(2Π)) * e(-(1/2) * ((x-u)/o)²)
double_t left_e = 1. / (o * two_pi_sqroot);
double_t mid_right_e = ((x /* - u*/) / o);
double_t right_e = -0.5 * mid_right_e * mid_right_e;
double_t final = left_e * exp(right_e);
return T(final);
}
2020-03-20 22:10:11 +00:00
template<typename T>
inline T lerp(T a, T b, double_t v)
{
return static_cast<T>((static_cast<double_t>(a) * (1.0 - v)) + (static_cast<double_t>(b) * v));
}
template<typename T>
class kalman1D {
T _q_process_noise_covariance;
T _r_measurement_noise_covariance;
T _x_value_of_interest;
T _p_estimation_error_covariance;
T _k_kalman_gain;
public:
kalman1D()
: _q_process_noise_covariance(0), _r_measurement_noise_covariance(0), _x_value_of_interest(0),
_p_estimation_error_covariance(0), _k_kalman_gain(0.0)
{}
kalman1D(T pnc, T mnc, T eec, T value)
: _q_process_noise_covariance(pnc), _r_measurement_noise_covariance(mnc), _x_value_of_interest(value),
_p_estimation_error_covariance(eec), _k_kalman_gain(0.0)
{}
~kalman1D() {}
T filter(T measurement)
{
_p_estimation_error_covariance += _q_process_noise_covariance;
_k_kalman_gain =
_p_estimation_error_covariance / (_p_estimation_error_covariance + _r_measurement_noise_covariance);
_x_value_of_interest += _k_kalman_gain * (measurement - _x_value_of_interest);
_p_estimation_error_covariance = (1 - _k_kalman_gain) * _p_estimation_error_covariance;
return _x_value_of_interest;
}
T get()
{
return _x_value_of_interest;
}
};
} // namespace math
2020-04-08 21:38:42 +00:00
inline std::size_t aligned_offset(std::size_t align, std::size_t pos)
{
return ((pos / align) + 1) * align;
}
2020-04-08 21:38:42 +00:00
void* malloc_aligned(std::size_t align, std::size_t size);
void free_aligned(void* mem);
2021-06-08 02:18:02 +00:00
} // namespace streamfx::util