mirror of
https://github.com/Xaymar/obs-StreamFX
synced 2024-11-14 15:55:07 +00:00
171 lines
4.7 KiB
C++
171 lines
4.7 KiB
C++
|
/*
|
||
|
* Modern effects for a modern Streamer
|
||
|
* Copyright (C) 2020 Michael Fabian Dirks
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
|
||
|
*/
|
||
|
|
||
|
#include "util-profiler.hpp"
|
||
|
#include <iterator>
|
||
|
|
||
|
util::profiler::profiler() {}
|
||
|
|
||
|
util::profiler::~profiler() {}
|
||
|
|
||
|
std::shared_ptr<util::profiler::instance> util::profiler::track()
|
||
|
{
|
||
|
return std::make_shared<util::profiler::instance>(shared_from_this());
|
||
|
}
|
||
|
|
||
|
void util::profiler::track(std::chrono::nanoseconds duration)
|
||
|
{
|
||
|
std::unique_lock<std::mutex> ul(_timings_lock);
|
||
|
auto itr = _timings.find(duration);
|
||
|
if (itr == _timings.end()) {
|
||
|
_timings.insert({duration, 1});
|
||
|
} else {
|
||
|
itr->second++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
uint64_t util::profiler::count()
|
||
|
{
|
||
|
uint64_t count = 0;
|
||
|
|
||
|
std::map<std::chrono::nanoseconds, size_t> copy_timings;
|
||
|
{
|
||
|
std::unique_lock<std::mutex> ul(_timings_lock);
|
||
|
copy(_timings.begin(), _timings.end(), std::inserter(copy_timings, copy_timings.end()));
|
||
|
}
|
||
|
|
||
|
for (auto kv : copy_timings) {
|
||
|
count += kv.second;
|
||
|
}
|
||
|
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
std::chrono::nanoseconds util::profiler::total_duration()
|
||
|
{
|
||
|
std::chrono::nanoseconds duration{0};
|
||
|
|
||
|
std::map<std::chrono::nanoseconds, size_t> copy_timings;
|
||
|
{
|
||
|
std::unique_lock<std::mutex> ul(_timings_lock);
|
||
|
copy(_timings.begin(), _timings.end(), std::inserter(copy_timings, copy_timings.end()));
|
||
|
}
|
||
|
|
||
|
for (auto kv : copy_timings) {
|
||
|
duration += kv.first * kv.second;
|
||
|
}
|
||
|
|
||
|
return duration;
|
||
|
}
|
||
|
|
||
|
double_t util::profiler::average_duration()
|
||
|
{
|
||
|
std::chrono::nanoseconds duration{0};
|
||
|
uint64_t count = 0;
|
||
|
|
||
|
std::map<std::chrono::nanoseconds, size_t> copy_timings;
|
||
|
{
|
||
|
std::unique_lock<std::mutex> ul(_timings_lock);
|
||
|
copy(_timings.begin(), _timings.end(), std::inserter(copy_timings, copy_timings.end()));
|
||
|
}
|
||
|
|
||
|
for (auto kv : copy_timings) {
|
||
|
duration += kv.first * kv.second;
|
||
|
count += kv.second;
|
||
|
}
|
||
|
|
||
|
return double_t(duration.count()) / double_t(count);
|
||
|
}
|
||
|
|
||
|
template<typename T>
|
||
|
inline bool is_equal(T a, T b, T c)
|
||
|
{
|
||
|
return (a == b) || ((a >= (b - c)) && (a <= (b + c)));
|
||
|
}
|
||
|
|
||
|
std::chrono::nanoseconds util::profiler::percentile(double_t percentile, bool by_time)
|
||
|
{
|
||
|
uint64_t calls = count();
|
||
|
|
||
|
std::map<std::chrono::nanoseconds, size_t> copy_timings;
|
||
|
{
|
||
|
std::unique_lock<std::mutex> ul(_timings_lock);
|
||
|
copy(_timings.begin(), _timings.end(), inserter(copy_timings, copy_timings.end()));
|
||
|
}
|
||
|
if (by_time) { // Return by time percentile.
|
||
|
// Find largest and smallest time.
|
||
|
std::chrono::nanoseconds smallest = copy_timings.begin()->first;
|
||
|
std::chrono::nanoseconds largest = copy_timings.rbegin()->first;
|
||
|
|
||
|
std::chrono::nanoseconds variance = largest - smallest;
|
||
|
std::chrono::nanoseconds threshold =
|
||
|
std::chrono::nanoseconds(smallest.count() + int64_t(variance.count() * percentile));
|
||
|
|
||
|
for (auto kv : copy_timings) {
|
||
|
double_t kv_pct = double_t((kv.first - smallest).count()) / double_t(variance.count());
|
||
|
if (is_equal(kv_pct, percentile, 0.00005) || (kv_pct > percentile)) {
|
||
|
return std::chrono::nanoseconds(kv.first);
|
||
|
}
|
||
|
}
|
||
|
} else { // Return by call percentile.
|
||
|
if (percentile == 0.0) {
|
||
|
return copy_timings.begin()->first;
|
||
|
}
|
||
|
|
||
|
uint64_t accu_calls_now = 0;
|
||
|
for (auto kv : copy_timings) {
|
||
|
uint64_t accu_calls_last = accu_calls_now;
|
||
|
accu_calls_now += kv.second;
|
||
|
|
||
|
double_t percentile_last = double_t(accu_calls_last) / double_t(calls);
|
||
|
double_t percentile_now = double_t(accu_calls_now) / double_t(calls);
|
||
|
|
||
|
if (is_equal(percentile, percentile_now, 0.0005)
|
||
|
|| ((percentile_last < percentile) && (percentile_now > percentile))) {
|
||
|
return std::chrono::nanoseconds(kv.first);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return std::chrono::nanoseconds(-1);
|
||
|
}
|
||
|
|
||
|
util::profiler::instance::instance(std::shared_ptr<util::profiler> parent)
|
||
|
: _parent(parent), _start(std::chrono::high_resolution_clock::now())
|
||
|
{}
|
||
|
|
||
|
util::profiler::instance::~instance()
|
||
|
{
|
||
|
auto end = std::chrono::high_resolution_clock::now();
|
||
|
auto dur = end - _start;
|
||
|
if (_parent) {
|
||
|
_parent->track(dur);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void util::profiler::instance::cancel()
|
||
|
{
|
||
|
_parent.reset();
|
||
|
}
|
||
|
|
||
|
void util::profiler::instance::reparent(std::shared_ptr<util::profiler> parent)
|
||
|
{
|
||
|
parent = parent;
|
||
|
}
|