mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-23 21:15:11 +00:00
54e93db207
not reliable yet
224 lines
6 KiB
C
224 lines
6 KiB
C
/*
|
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
|
|
#include "dft/dft.h"
|
|
#include "rdft/rdft.h"
|
|
#include <stddef.h>
|
|
|
|
static void destroy(problem *ego_)
|
|
{
|
|
problem_rdft2 *ego = (problem_rdft2 *) ego_;
|
|
X(tensor_destroy2)(ego->vecsz, ego->sz);
|
|
X(ifree)(ego_);
|
|
}
|
|
|
|
static void hash(const problem *p_, md5 *m)
|
|
{
|
|
const problem_rdft2 *p = (const problem_rdft2 *) p_;
|
|
X(md5puts)(m, "rdft2");
|
|
X(md5int)(m, p->r0 == p->cr);
|
|
X(md5INT)(m, p->r1 - p->r0);
|
|
X(md5INT)(m, p->ci - p->cr);
|
|
X(md5int)(m, X(ialignment_of)(p->r0));
|
|
X(md5int)(m, X(ialignment_of)(p->r1));
|
|
X(md5int)(m, X(ialignment_of)(p->cr));
|
|
X(md5int)(m, X(ialignment_of)(p->ci));
|
|
X(md5int)(m, p->kind);
|
|
X(tensor_md5)(m, p->sz);
|
|
X(tensor_md5)(m, p->vecsz);
|
|
}
|
|
|
|
static void print(const problem *ego_, printer *p)
|
|
{
|
|
const problem_rdft2 *ego = (const problem_rdft2 *) ego_;
|
|
p->print(p, "(rdft2 %d %d %T %T)",
|
|
(int)(ego->cr == ego->r0),
|
|
(int)(ego->kind),
|
|
ego->sz,
|
|
ego->vecsz);
|
|
}
|
|
|
|
static void recur(const iodim *dims, int rnk, R *I0, R *I1)
|
|
{
|
|
if (rnk == RNK_MINFTY)
|
|
return;
|
|
else if (rnk == 0)
|
|
I0[0] = K(0.0);
|
|
else if (rnk > 0) {
|
|
INT i, n = dims[0].n, is = dims[0].is;
|
|
|
|
if (rnk == 1) {
|
|
for (i = 0; i < n - 1; i += 2) {
|
|
*I0 = *I1 = K(0.0);
|
|
I0 += is; I1 += is;
|
|
}
|
|
if (i < n)
|
|
*I0 = K(0.0);
|
|
} else {
|
|
for (i = 0; i < n; ++i)
|
|
recur(dims + 1, rnk - 1, I0 + i * is, I1 + i * is);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void vrecur(const iodim *vdims, int vrnk,
|
|
const iodim *dims, int rnk, R *I0, R *I1)
|
|
{
|
|
if (vrnk == RNK_MINFTY)
|
|
return;
|
|
else if (vrnk == 0)
|
|
recur(dims, rnk, I0, I1);
|
|
else if (vrnk > 0) {
|
|
INT i, n = vdims[0].n, is = vdims[0].is;
|
|
|
|
for (i = 0; i < n; ++i)
|
|
vrecur(vdims + 1, vrnk - 1,
|
|
dims, rnk, I0 + i * is, I1 + i * is);
|
|
}
|
|
}
|
|
|
|
INT X(rdft2_complex_n)(INT real_n, rdft_kind kind)
|
|
{
|
|
switch (kind) {
|
|
case R2HC:
|
|
case HC2R:
|
|
return (real_n / 2) + 1;
|
|
case R2HCII:
|
|
case HC2RIII:
|
|
return (real_n + 1) / 2;
|
|
default:
|
|
/* can't happen */
|
|
A(0);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void zero(const problem *ego_)
|
|
{
|
|
const problem_rdft2 *ego = (const problem_rdft2 *) ego_;
|
|
if (R2HC_KINDP(ego->kind)) {
|
|
/* FIXME: can we avoid the double recursion somehow? */
|
|
vrecur(ego->vecsz->dims, ego->vecsz->rnk,
|
|
ego->sz->dims, ego->sz->rnk,
|
|
UNTAINT(ego->r0), UNTAINT(ego->r1));
|
|
} else {
|
|
tensor *sz;
|
|
tensor *sz2 = X(tensor_copy)(ego->sz);
|
|
int rnk = sz2->rnk;
|
|
if (rnk > 0) /* ~half as many complex outputs */
|
|
sz2->dims[rnk-1].n =
|
|
X(rdft2_complex_n)(sz2->dims[rnk-1].n, ego->kind);
|
|
sz = X(tensor_append)(ego->vecsz, sz2);
|
|
X(tensor_destroy)(sz2);
|
|
X(dft_zerotens)(sz, UNTAINT(ego->cr), UNTAINT(ego->ci));
|
|
X(tensor_destroy)(sz);
|
|
}
|
|
}
|
|
|
|
static const problem_adt padt =
|
|
{
|
|
PROBLEM_RDFT2,
|
|
hash,
|
|
zero,
|
|
print,
|
|
destroy
|
|
};
|
|
|
|
problem *X(mkproblem_rdft2)(const tensor *sz, const tensor *vecsz,
|
|
R *r0, R *r1, R *cr, R *ci,
|
|
rdft_kind kind)
|
|
{
|
|
problem_rdft2 *ego;
|
|
|
|
A(kind == R2HC || kind == R2HCII || kind == HC2R || kind == HC2RIII);
|
|
A(X(tensor_kosherp)(sz));
|
|
A(X(tensor_kosherp)(vecsz));
|
|
A(FINITE_RNK(sz->rnk));
|
|
|
|
/* require in-place problems to use r0 == cr */
|
|
if (UNTAINT(r0) == UNTAINT(ci))
|
|
return X(mkproblem_unsolvable)();
|
|
|
|
/* FIXME: should check UNTAINT(r1) == UNTAINT(cr) but
|
|
only if odd elements exist, which requires compressing the
|
|
tensors first */
|
|
|
|
if (UNTAINT(r0) == UNTAINT(cr))
|
|
r0 = cr = JOIN_TAINT(r0, cr);
|
|
|
|
ego = (problem_rdft2 *)X(mkproblem)(sizeof(problem_rdft2), &padt);
|
|
|
|
if (sz->rnk > 1) { /* have to compress rnk-1 dims separately, ugh */
|
|
tensor *szc = X(tensor_copy_except)(sz, sz->rnk - 1);
|
|
tensor *szr = X(tensor_copy_sub)(sz, sz->rnk - 1, 1);
|
|
tensor *szcc = X(tensor_compress)(szc);
|
|
if (szcc->rnk > 0)
|
|
ego->sz = X(tensor_append)(szcc, szr);
|
|
else
|
|
ego->sz = X(tensor_compress)(szr);
|
|
X(tensor_destroy2)(szc, szr); X(tensor_destroy)(szcc);
|
|
} else {
|
|
ego->sz = X(tensor_compress)(sz);
|
|
}
|
|
ego->vecsz = X(tensor_compress_contiguous)(vecsz);
|
|
ego->r0 = r0;
|
|
ego->r1 = r1;
|
|
ego->cr = cr;
|
|
ego->ci = ci;
|
|
ego->kind = kind;
|
|
|
|
A(FINITE_RNK(ego->sz->rnk));
|
|
return &(ego->super);
|
|
|
|
}
|
|
|
|
/* Same as X(mkproblem_rdft2), but also destroy input tensors. */
|
|
problem *X(mkproblem_rdft2_d)(tensor *sz, tensor *vecsz,
|
|
R *r0, R *r1, R *cr, R *ci, rdft_kind kind)
|
|
{
|
|
problem *p = X(mkproblem_rdft2)(sz, vecsz, r0, r1, cr, ci, kind);
|
|
X(tensor_destroy2)(vecsz, sz);
|
|
return p;
|
|
}
|
|
|
|
/* Same as X(mkproblem_rdft2_d), but with only one R pointer.
|
|
Used by the API. */
|
|
problem *X(mkproblem_rdft2_d_3pointers)(tensor *sz, tensor *vecsz,
|
|
R *r0, R *cr, R *ci, rdft_kind kind)
|
|
{
|
|
problem *p;
|
|
int rnk = sz->rnk;
|
|
R *r1;
|
|
|
|
if (rnk == 0)
|
|
r1 = r0;
|
|
else if (R2HC_KINDP(kind)) {
|
|
r1 = r0 + sz->dims[rnk-1].is;
|
|
sz->dims[rnk-1].is *= 2;
|
|
} else {
|
|
r1 = r0 + sz->dims[rnk-1].os;
|
|
sz->dims[rnk-1].os *= 2;
|
|
}
|
|
|
|
p = X(mkproblem_rdft2)(sz, vecsz, r0, r1, cr, ci, kind);
|
|
X(tensor_destroy2)(vecsz, sz);
|
|
return p;
|
|
}
|