mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-23 13:05:11 +00:00
54e93db207
not reliable yet
300 lines
9.7 KiB
C
300 lines
9.7 KiB
C
/*
|
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
/* Recursive "radix-r" distributed transpose, which breaks a transpose
|
|
over p processes into p/r transposes over r processes plus r
|
|
transposes over p/r processes. If performed recursively, this
|
|
produces a total of O(p log p) messages vs. O(p^2) messages for a
|
|
direct approach.
|
|
|
|
However, this is not necessarily an improvement. The total size of
|
|
all the messages is actually increased from O(N) to O(N log p)
|
|
where N is the total data size. Also, the amount of local data
|
|
rearrangement is increased. So, it's not clear, a priori, what the
|
|
best algorithm will be, and we'll leave it to the planner. (In
|
|
theory and practice, it looks like this becomes advantageous for
|
|
large p, in the limit where the message sizes are small and
|
|
latency-dominated.)
|
|
*/
|
|
|
|
#include "mpi-transpose.h"
|
|
#include <string.h>
|
|
|
|
typedef struct {
|
|
solver super;
|
|
int (*radix)(int np);
|
|
const char *nam;
|
|
int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
|
|
} S;
|
|
|
|
typedef struct {
|
|
plan_mpi_transpose super;
|
|
|
|
plan *cld1, *cldtr, *cldtm;
|
|
int preserve_input;
|
|
|
|
int r; /* "radix" */
|
|
const char *nam;
|
|
} P;
|
|
|
|
static void apply(const plan *ego_, R *I, R *O)
|
|
{
|
|
const P *ego = (const P *) ego_;
|
|
plan_rdft *cld1, *cldtr, *cldtm;
|
|
|
|
cld1 = (plan_rdft *) ego->cld1;
|
|
if (cld1) cld1->apply((plan *) cld1, I, O);
|
|
|
|
if (ego->preserve_input) I = O;
|
|
|
|
cldtr = (plan_rdft *) ego->cldtr;
|
|
if (cldtr) cldtr->apply((plan *) cldtr, O, I);
|
|
|
|
cldtm = (plan_rdft *) ego->cldtm;
|
|
if (cldtm) cldtm->apply((plan *) cldtm, I, O);
|
|
}
|
|
|
|
static int radix_sqrt(int np)
|
|
{
|
|
int r;
|
|
for (r = (int) (X(isqrt)(np)); np % r != 0; ++r)
|
|
;
|
|
return r;
|
|
}
|
|
|
|
static int radix_first(int np)
|
|
{
|
|
int r = (int) (X(first_divisor)(np));
|
|
return (r >= (int) (X(isqrt)(np)) ? 0 : r);
|
|
}
|
|
|
|
/* the local allocated space on process pe required for the given transpose
|
|
dimensions and block sizes */
|
|
static INT transpose_space(INT nx, INT ny, INT block, INT tblock, int pe)
|
|
{
|
|
return X(imax)(XM(block)(nx, block, pe) * ny,
|
|
nx * XM(block)(ny, tblock, pe));
|
|
}
|
|
|
|
/* check whether the recursive transposes fit within the space
|
|
that must have been allocated on each process for this transpose;
|
|
this must be modified if the subdivision in mkplan is changed! */
|
|
static int enough_space(INT nx, INT ny, INT block, INT tblock,
|
|
int r, int n_pes)
|
|
{
|
|
int pe;
|
|
int m = n_pes / r;
|
|
for (pe = 0; pe < n_pes; ++pe) {
|
|
INT space = transpose_space(nx, ny, block, tblock, pe);
|
|
INT b1 = XM(block)(nx, r * block, pe / r);
|
|
INT b2 = XM(block)(ny, m * tblock, pe % r);
|
|
if (transpose_space(b1, ny, block, m*tblock, pe % r) > space
|
|
|| transpose_space(nx, b2, r*block, tblock, pe / r) > space)
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* In theory, transpose-recurse becomes advantageous for message sizes
|
|
below some minimum, assuming that the time is dominated by
|
|
communications. In practice, we want to constrain the minimum
|
|
message size for transpose-recurse to keep the planning time down.
|
|
I've set this conservatively according to some simple experiments
|
|
on a Cray XT3 where the crossover message size was 128, although on
|
|
a larger-latency machine the crossover will be larger. */
|
|
#define SMALL_MESSAGE 2048
|
|
|
|
static int applicable(const S *ego, const problem *p_,
|
|
const planner *plnr, int *r)
|
|
{
|
|
const problem_mpi_transpose *p = (const problem_mpi_transpose *) p_;
|
|
int n_pes;
|
|
MPI_Comm_size(p->comm, &n_pes);
|
|
return (1
|
|
&& p->tblock * n_pes == p->ny
|
|
&& (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
|
|
&& p->I != p->O))
|
|
&& (*r = ego->radix(n_pes)) && *r < n_pes && *r > 1
|
|
&& enough_space(p->nx, p->ny, p->block, p->tblock, *r, n_pes)
|
|
&& (!CONSERVE_MEMORYP(plnr) || *r > 8
|
|
|| !X(toobig)((p->nx * (p->ny / n_pes) * p->vn) / *r))
|
|
&& (!NO_SLOWP(plnr) ||
|
|
(p->nx * (p->ny / n_pes) * p->vn) / n_pes <= SMALL_MESSAGE)
|
|
&& ONLY_TRANSPOSEDP(p->flags)
|
|
);
|
|
}
|
|
|
|
static void awake(plan *ego_, enum wakefulness wakefulness)
|
|
{
|
|
P *ego = (P *) ego_;
|
|
X(plan_awake)(ego->cld1, wakefulness);
|
|
X(plan_awake)(ego->cldtr, wakefulness);
|
|
X(plan_awake)(ego->cldtm, wakefulness);
|
|
}
|
|
|
|
static void destroy(plan *ego_)
|
|
{
|
|
P *ego = (P *) ego_;
|
|
X(plan_destroy_internal)(ego->cldtm);
|
|
X(plan_destroy_internal)(ego->cldtr);
|
|
X(plan_destroy_internal)(ego->cld1);
|
|
}
|
|
|
|
static void print(const plan *ego_, printer *p)
|
|
{
|
|
const P *ego = (const P *) ego_;
|
|
p->print(p, "(mpi-transpose-recurse/%s/%d%s%(%p%)%(%p%)%(%p%))",
|
|
ego->nam, ego->r, ego->preserve_input==2 ?"/p":"",
|
|
ego->cld1, ego->cldtr, ego->cldtm);
|
|
}
|
|
|
|
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
|
|
{
|
|
const S *ego = (const S *) ego_;
|
|
const problem_mpi_transpose *p;
|
|
P *pln;
|
|
plan *cld1 = 0, *cldtr = 0, *cldtm = 0;
|
|
R *I, *O;
|
|
int me, np, r, m;
|
|
INT b;
|
|
MPI_Comm comm2;
|
|
static const plan_adt padt = {
|
|
XM(transpose_solve), awake, print, destroy
|
|
};
|
|
|
|
UNUSED(ego);
|
|
|
|
if (!applicable(ego, p_, plnr, &r))
|
|
return (plan *) 0;
|
|
|
|
p = (const problem_mpi_transpose *) p_;
|
|
|
|
MPI_Comm_size(p->comm, &np);
|
|
MPI_Comm_rank(p->comm, &me);
|
|
m = np / r;
|
|
A(r * m == np);
|
|
|
|
I = p->I; O = p->O;
|
|
|
|
b = XM(block)(p->nx, p->block, me);
|
|
A(p->tblock * np == p->ny); /* this is currently required for cld1 */
|
|
if (p->flags & TRANSPOSED_IN) {
|
|
/* m x r x (bt x b x vn) -> r x m x (bt x b x vn) */
|
|
INT vn = p->vn * b * p->tblock;
|
|
cld1 = X(mkplan_f_d)(plnr,
|
|
X(mkproblem_rdft_0_d)(X(mktensor_3d)
|
|
(m, r*vn, vn,
|
|
r, vn, m*vn,
|
|
vn, 1, 1),
|
|
I, O),
|
|
0, 0, NO_SLOW);
|
|
}
|
|
else if (I != O) { /* combine cld1 with TRANSPOSED_IN permutation */
|
|
/* b x m x r x bt x vn -> r x m x bt x b x vn */
|
|
INT vn = p->vn;
|
|
INT bt = p->tblock;
|
|
cld1 = X(mkplan_f_d)(plnr,
|
|
X(mkproblem_rdft_0_d)(X(mktensor_5d)
|
|
(b, m*r*bt*vn, vn,
|
|
m, r*bt*vn, bt*b*vn,
|
|
r, bt*vn, m*bt*b*vn,
|
|
bt, vn, b*vn,
|
|
vn, 1, 1),
|
|
I, O),
|
|
0, 0, NO_SLOW);
|
|
}
|
|
else { /* TRANSPOSED_IN permutation must be separate for in-place */
|
|
/* b x (m x r) x bt x vn -> b x (r x m) x bt x vn */
|
|
INT vn = p->vn * p->tblock;
|
|
cld1 = X(mkplan_f_d)(plnr,
|
|
X(mkproblem_rdft_0_d)(X(mktensor_4d)
|
|
(m, r*vn, vn,
|
|
r, vn, m*vn,
|
|
vn, 1, 1,
|
|
b, np*vn, np*vn),
|
|
I, O),
|
|
0, 0, NO_SLOW);
|
|
}
|
|
if (XM(any_true)(!cld1, p->comm)) goto nada;
|
|
|
|
if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) I = O;
|
|
|
|
b = XM(block)(p->nx, r * p->block, me / r);
|
|
MPI_Comm_split(p->comm, me / r, me, &comm2);
|
|
if (b)
|
|
cldtr = X(mkplan_d)(plnr, XM(mkproblem_transpose)
|
|
(b, p->ny, p->vn,
|
|
O, I, p->block, m * p->tblock, comm2,
|
|
p->I != p->O
|
|
? TRANSPOSED_IN : (p->flags & TRANSPOSED_IN)));
|
|
MPI_Comm_free(&comm2);
|
|
if (XM(any_true)(b && !cldtr, p->comm)) goto nada;
|
|
|
|
b = XM(block)(p->ny, m * p->tblock, me % r);
|
|
MPI_Comm_split(p->comm, me % r, me, &comm2);
|
|
if (b)
|
|
cldtm = X(mkplan_d)(plnr, XM(mkproblem_transpose)
|
|
(p->nx, b, p->vn,
|
|
I, O, r * p->block, p->tblock, comm2,
|
|
TRANSPOSED_IN | (p->flags & TRANSPOSED_OUT)));
|
|
MPI_Comm_free(&comm2);
|
|
if (XM(any_true)(b && !cldtm, p->comm)) goto nada;
|
|
|
|
pln = MKPLAN_MPI_TRANSPOSE(P, &padt, apply);
|
|
|
|
pln->cld1 = cld1;
|
|
pln->cldtr = cldtr;
|
|
pln->cldtm = cldtm;
|
|
pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
|
|
pln->r = r;
|
|
pln->nam = ego->nam;
|
|
|
|
pln->super.super.ops = cld1->ops;
|
|
if (cldtr) X(ops_add2)(&cldtr->ops, &pln->super.super.ops);
|
|
if (cldtm) X(ops_add2)(&cldtm->ops, &pln->super.super.ops);
|
|
|
|
return &(pln->super.super);
|
|
|
|
nada:
|
|
X(plan_destroy_internal)(cldtm);
|
|
X(plan_destroy_internal)(cldtr);
|
|
X(plan_destroy_internal)(cld1);
|
|
return (plan *) 0;
|
|
}
|
|
|
|
static solver *mksolver(int preserve_input,
|
|
int (*radix)(int np), const char *nam)
|
|
{
|
|
static const solver_adt sadt = { PROBLEM_MPI_TRANSPOSE, mkplan, 0 };
|
|
S *slv = MKSOLVER(S, &sadt);
|
|
slv->preserve_input = preserve_input;
|
|
slv->radix = radix;
|
|
slv->nam = nam;
|
|
return &(slv->super);
|
|
}
|
|
|
|
void XM(transpose_recurse_register)(planner *p)
|
|
{
|
|
int preserve_input;
|
|
for (preserve_input = 0; preserve_input <= 1; ++preserve_input) {
|
|
REGISTER_SOLVER(p, mksolver(preserve_input, radix_sqrt, "sqrt"));
|
|
REGISTER_SOLVER(p, mksolver(preserve_input, radix_first, "first"));
|
|
}
|
|
}
|