/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* FFTW-MPI internal header file */ #ifndef __IFFTW_MPI_H__ #define __IFFTW_MPI_H__ #include "kernel/ifftw.h" #include "rdft/rdft.h" #include <mpi.h> /* mpi problem flags: problem-dependent meaning, but in general SCRAMBLED means some reordering *within* the dimensions, while TRANSPOSED means some reordering *of* the dimensions */ #define SCRAMBLED_IN (1 << 0) #define SCRAMBLED_OUT (1 << 1) #define TRANSPOSED_IN (1 << 2) #define TRANSPOSED_OUT (1 << 3) #define RANK1_BIGVEC_ONLY (1 << 4) /* for rank=1, allow only bigvec solver */ #define ONLY_SCRAMBLEDP(flags) (!((flags) & ~(SCRAMBLED_IN|SCRAMBLED_OUT))) #define ONLY_TRANSPOSEDP(flags) (!((flags) & ~(TRANSPOSED_IN|TRANSPOSED_OUT))) #if defined(FFTW_SINGLE) # define FFTW_MPI_TYPE MPI_FLOAT #elif defined(FFTW_LDOUBLE) # define FFTW_MPI_TYPE MPI_LONG_DOUBLE #elif defined(FFTW_QUAD) # error MPI quad-precision type is unknown #else # define FFTW_MPI_TYPE MPI_DOUBLE #endif /* all fftw-mpi identifiers start with fftw_mpi (or fftwf_mpi etc.) */ #define XM(name) X(CONCAT(mpi_, name)) /***********************************************************************/ /* block distributions */ /* a distributed dimension of length n with input and output block sizes ib and ob, respectively. */ typedef enum { IB = 0, OB } block_kind; typedef struct { INT n; INT b[2]; /* b[IB], b[OB] */ } ddim; /* Loop over k in {IB, OB}. Note: need explicit casts for C++. */ #define FORALL_BLOCK_KIND(k) for (k = IB; k <= OB; k = (block_kind) (((int) k) + 1)) /* unlike tensors in the serial FFTW, the ordering of the dtensor dimensions matters - both the array and the block layout are row-major order. */ typedef struct { int rnk; #if defined(STRUCT_HACK_KR) ddim dims[1]; #elif defined(STRUCT_HACK_C99) ddim dims[]; #else ddim *dims; #endif } dtensor; /* dtensor.c: */ dtensor *XM(mkdtensor)(int rnk); void XM(dtensor_destroy)(dtensor *sz); dtensor *XM(dtensor_copy)(const dtensor *sz); dtensor *XM(dtensor_canonical)(const dtensor *sz, int compress); int XM(dtensor_validp)(const dtensor *sz); void XM(dtensor_md5)(md5 *p, const dtensor *t); void XM(dtensor_print)(const dtensor *t, printer *p); /* block.c: */ /* for a single distributed dimension: */ INT XM(num_blocks)(INT n, INT block); int XM(num_blocks_ok)(INT n, INT block, MPI_Comm comm); INT XM(default_block)(INT n, int n_pes); INT XM(block)(INT n, INT block, int which_block); /* for multiple distributed dimensions: */ INT XM(num_blocks_total)(const dtensor *sz, block_kind k); int XM(idle_process)(const dtensor *sz, block_kind k, int which_pe); void XM(block_coords)(const dtensor *sz, block_kind k, int which_pe, INT *coords); INT XM(total_block)(const dtensor *sz, block_kind k, int which_pe); int XM(is_local_after)(int dim, const dtensor *sz, block_kind k); int XM(is_local)(const dtensor *sz, block_kind k); int XM(is_block1d)(const dtensor *sz, block_kind k); /* choose-radix.c */ INT XM(choose_radix)(ddim d, int n_pes, unsigned flags, int sign, INT rblock[2], INT mblock[2]); /***********************************************************************/ /* any_true.c */ int XM(any_true)(int condition, MPI_Comm comm); int XM(md5_equal)(md5 m, MPI_Comm comm); /* conf.c */ void XM(conf_standard)(planner *p); /***********************************************************************/ /* rearrange.c */ /* Different ways to rearrange the vector dimension vn during transposition, reflecting different tradeoffs between ease of transposition and contiguity during the subsequent DFTs. TODO: can we pare this down to CONTIG and DISCONTIG, at least in MEASURE mode? SQUARE_MIDDLE is also used for 1d destroy-input DFTs. */ typedef enum { CONTIG = 0, /* vn x 1: make subsequent DFTs contiguous */ DISCONTIG, /* P x (vn/P) for P processes */ SQUARE_BEFORE, /* try to get square transpose at beginning */ SQUARE_MIDDLE, /* try to get square transpose in the middle */ SQUARE_AFTER /* try to get square transpose at end */ } rearrangement; /* skipping SQUARE_AFTER since it doesn't seem to offer any advantage over SQUARE_BEFORE */ #define FORALL_REARRANGE(rearrange) for (rearrange = CONTIG; rearrange <= SQUARE_MIDDLE; rearrange = (rearrangement) (((int) rearrange) + 1)) int XM(rearrange_applicable)(rearrangement rearrange, ddim dim0, INT vn, int n_pes); INT XM(rearrange_ny)(rearrangement rearrange, ddim dim0, INT vn, int n_pes); /***********************************************************************/ #endif /* __IFFTW_MPI_H__ */