/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD) #error "AVX only works in single or double precision" #endif #ifdef FFTW_SINGLE # define DS(d,s) s /* single-precision option */ # define SUFF(name) name ## s #else # define DS(d,s) d /* double-precision option */ # define SUFF(name) name ## d #endif #define SIMD_SUFFIX _avx /* for renaming */ #define VL DS(2, 4) /* SIMD complex vector length */ #define SIMD_VSTRIDE_OKA(x) ((x) == 2) #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK #if defined(__GNUC__) && !defined(__AVX__) /* sanity check */ #error "compiling simd-avx.h without -mavx" #endif #ifdef _MSC_VER #ifndef inline #define inline __inline #endif #endif #include typedef DS(__m256d, __m256) V; #define VADD SUFF(_mm256_add_p) #define VSUB SUFF(_mm256_sub_p) #define VMUL SUFF(_mm256_mul_p) #define VXOR SUFF(_mm256_xor_p) #define VSHUF SUFF(_mm256_shuffle_p) #define SHUFVALD(fp0,fp1) \ (((fp1) << 3) | ((fp0) << 2) | ((fp1) << 1) | ((fp0))) #define SHUFVALS(fp0,fp1,fp2,fp3) \ (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0))) #define VDUPL(x) DS(_mm256_unpacklo_pd(x, x), VSHUF(x, x, SHUFVALS(0, 0, 2, 2))) #define VDUPH(x) DS(_mm256_unpackhi_pd(x, x), VSHUF(x, x, SHUFVALS(1, 1, 3, 3))) #define VLIT(x0, x1) DS(_mm256_set_pd(x0, x1, x0, x1), _mm256_set_ps(x0, x1, x0, x1, x0, x1, x0, x1)) #define DVK(var, val) V var = VLIT(val, val) #define LDK(x) x static inline V LDA(const R *x, INT ivs, const R *aligned_like) { (void)aligned_like; /* UNUSED */ (void)ivs; /* UNUSED */ return SUFF(_mm256_loadu_p)(x); } static inline void STA(R *x, V v, INT ovs, const R *aligned_like) { (void)aligned_like; /* UNUSED */ (void)ovs; /* UNUSED */ SUFF(_mm256_storeu_p)(x, v); } #if FFTW_SINGLE # ifdef _MSC_VER /* Temporarily disable the warning "uninitialized local variable 'name' used" and runtime checks for using a variable before it is defined which is erroneously triggered by the LOADL0 / LOADH macros as they only modify VAL partly each. */ # ifndef __INTEL_COMPILER # pragma warning(disable : 4700) # pragma runtime_checks("u", off) # endif # endif # ifdef __INTEL_COMPILER # pragma warning(disable : 592) # endif #define LOADH(addr, val) _mm_loadh_pi(val, (const __m64 *)(addr)) #define LOADL(addr, val) _mm_loadl_pi(val, (const __m64 *)(addr)) #define STOREH(addr, val) _mm_storeh_pi((__m64 *)(addr), val) #define STOREL(addr, val) _mm_storel_pi((__m64 *)(addr), val) /* it seems like the only AVX way to store 4 complex floats is to extract two pairs of complex floats into two __m128 registers, and then use SSE-like half-stores. Similarly, to load 4 complex floats, we load two pairs of complex floats into two __m128 registers, and then pack the two __m128 registers into one __m256 value. */ static inline V LD(const R *x, INT ivs, const R *aligned_like) { __m128 l, h; V v; (void)aligned_like; /* UNUSED */ l = LOADL(x, l); l = LOADH(x + ivs, l); h = LOADL(x + 2*ivs, h); h = LOADH(x + 3*ivs, h); v = _mm256_castps128_ps256(l); v = _mm256_insertf128_ps(v, h, 1); return v; } # ifdef _MSC_VER # ifndef __INTEL_COMPILER # pragma warning(default : 4700) # pragma runtime_checks("u", restore) # endif # endif # ifdef __INTEL_COMPILER # pragma warning(default : 592) # endif static inline void ST(R *x, V v, INT ovs, const R *aligned_like) { __m128 h = _mm256_extractf128_ps(v, 1); __m128 l = _mm256_castps256_ps128(v); (void)aligned_like; /* UNUSED */ /* WARNING: the extra_iter hack depends upon STOREL occurring after STOREH */ STOREH(x + 3*ovs, h); STOREL(x + 2*ovs, h); STOREH(x + ovs, l); STOREL(x, l); } #define STM2(x, v, ovs, aligned_like) /* no-op */ static inline void STN2(R *x, V v0, V v1, INT ovs) { V x0 = VSHUF(v0, v1, SHUFVALS(0, 1, 0, 1)); V x1 = VSHUF(v0, v1, SHUFVALS(2, 3, 2, 3)); __m128 h0 = _mm256_extractf128_ps(x0, 1); __m128 l0 = _mm256_castps256_ps128(x0); __m128 h1 = _mm256_extractf128_ps(x1, 1); __m128 l1 = _mm256_castps256_ps128(x1); *(__m128 *)(x + 3*ovs) = h1; *(__m128 *)(x + 2*ovs) = h0; *(__m128 *)(x + 1*ovs) = l1; *(__m128 *)(x + 0*ovs) = l0; } #define STM4(x, v, ovs, aligned_like) /* no-op */ #define STN4(x, v0, v1, v2, v3, ovs) \ { \ V xxx0, xxx1, xxx2, xxx3; \ V yyy0, yyy1, yyy2, yyy3; \ xxx0 = _mm256_unpacklo_ps(v0, v2); \ xxx1 = _mm256_unpackhi_ps(v0, v2); \ xxx2 = _mm256_unpacklo_ps(v1, v3); \ xxx3 = _mm256_unpackhi_ps(v1, v3); \ yyy0 = _mm256_unpacklo_ps(xxx0, xxx2); \ yyy1 = _mm256_unpackhi_ps(xxx0, xxx2); \ yyy2 = _mm256_unpacklo_ps(xxx1, xxx3); \ yyy3 = _mm256_unpackhi_ps(xxx1, xxx3); \ *(__m128 *)(x + 0 * ovs) = _mm256_castps256_ps128(yyy0); \ *(__m128 *)(x + 4 * ovs) = _mm256_extractf128_ps(yyy0, 1); \ *(__m128 *)(x + 1 * ovs) = _mm256_castps256_ps128(yyy1); \ *(__m128 *)(x + 5 * ovs) = _mm256_extractf128_ps(yyy1, 1); \ *(__m128 *)(x + 2 * ovs) = _mm256_castps256_ps128(yyy2); \ *(__m128 *)(x + 6 * ovs) = _mm256_extractf128_ps(yyy2, 1); \ *(__m128 *)(x + 3 * ovs) = _mm256_castps256_ps128(yyy3); \ *(__m128 *)(x + 7 * ovs) = _mm256_extractf128_ps(yyy3, 1); \ } #else static inline __m128d VMOVAPD_LD(const R *x) { /* gcc-4.6 miscompiles the combination _mm256_castpd128_pd256(VMOVAPD_LD(x)) into a 256-bit vmovapd, which requires 32-byte aligment instead of 16-byte alignment. Force the use of vmovapd via asm until compilers stabilize. */ #if defined(__GNUC__) __m128d var; __asm__("vmovapd %1, %0\n" : "=x"(var) : "m"(x[0])); return var; #else return *(const __m128d *)x; #endif } static inline V LD(const R *x, INT ivs, const R *aligned_like) { V var; (void)aligned_like; /* UNUSED */ var = _mm256_castpd128_pd256(VMOVAPD_LD(x)); var = _mm256_insertf128_pd(var, *(const __m128d *)(x+ivs), 1); return var; } static inline void ST(R *x, V v, INT ovs, const R *aligned_like) { (void)aligned_like; /* UNUSED */ /* WARNING: the extra_iter hack depends upon the store of the low part occurring after the store of the high part */ *(__m128d *)(x + ovs) = _mm256_extractf128_pd(v, 1); *(__m128d *)x = _mm256_castpd256_pd128(v); } #define STM2 ST #define STN2(x, v0, v1, ovs) /* nop */ #define STM4(x, v, ovs, aligned_like) /* no-op */ /* STN4 is a macro, not a function, thanks to Visual C++ developers deciding "it would be infrequent that people would want to pass more than 3 [__m128 parameters] by value." Even though the comment was made about __m128 parameters, it appears to apply to __m256 parameters as well. */ #define STN4(x, v0, v1, v2, v3, ovs) \ { \ V xxx0, xxx1, xxx2, xxx3; \ xxx0 = _mm256_unpacklo_pd(v0, v1); \ xxx1 = _mm256_unpackhi_pd(v0, v1); \ xxx2 = _mm256_unpacklo_pd(v2, v3); \ xxx3 = _mm256_unpackhi_pd(v2, v3); \ STA(x, _mm256_permute2f128_pd(xxx0, xxx2, 0x20), 0, 0); \ STA(x + ovs, _mm256_permute2f128_pd(xxx1, xxx3, 0x20), 0, 0); \ STA(x + 2 * ovs, _mm256_permute2f128_pd(xxx0, xxx2, 0x31), 0, 0); \ STA(x + 3 * ovs, _mm256_permute2f128_pd(xxx1, xxx3, 0x31), 0, 0); \ } #endif static inline V FLIP_RI(V x) { return VSHUF(x, x, DS(SHUFVALD(1, 0), SHUFVALS(1, 0, 3, 2))); } static inline V VCONJ(V x) { /* Produce a SIMD vector[VL] of (0 + -0i). We really want to write this: V pmpm = VLIT(-0.0, 0.0); but historically some compilers have ignored the distiction between +0 and -0. It looks like 'gcc-8 -fast-math' treats -0 as 0 too. */ union uvec { unsigned u[8]; V v; }; static const union uvec pmpm = { #ifdef FFTW_SINGLE { 0x00000000, 0x80000000, 0x00000000, 0x80000000, 0x00000000, 0x80000000, 0x00000000, 0x80000000 } #else { 0x00000000, 0x00000000, 0x00000000, 0x80000000, 0x00000000, 0x00000000, 0x00000000, 0x80000000 } #endif }; return VXOR(pmpm.v, x); } static inline V VBYI(V x) { return FLIP_RI(VCONJ(x)); } /* FMA support */ #define VFMA(a, b, c) VADD(c, VMUL(a, b)) #define VFNMS(a, b, c) VSUB(c, VMUL(a, b)) #define VFMS(a, b, c) VSUB(VMUL(a, b), c) #define VFMAI(b, c) VADD(c, VBYI(b)) #define VFNMSI(b, c) VSUB(c, VBYI(b)) #define VFMACONJ(b,c) VADD(VCONJ(b),c) #define VFMSCONJ(b,c) VSUB(VCONJ(b),c) #define VFNMSCONJ(b,c) VSUB(c, VCONJ(b)) static inline V VZMUL(V tx, V sr) { V tr = VDUPL(tx); V ti = VDUPH(tx); tr = VMUL(sr, tr); sr = VBYI(sr); return VFMA(ti, sr, tr); } static inline V VZMULJ(V tx, V sr) { V tr = VDUPL(tx); V ti = VDUPH(tx); tr = VMUL(sr, tr); sr = VBYI(sr); return VFNMS(ti, sr, tr); } static inline V VZMULI(V tx, V sr) { V tr = VDUPL(tx); V ti = VDUPH(tx); ti = VMUL(ti, sr); sr = VBYI(sr); return VFMS(tr, sr, ti); } static inline V VZMULIJ(V tx, V sr) { V tr = VDUPL(tx); V ti = VDUPH(tx); ti = VMUL(ti, sr); sr = VBYI(sr); return VFMA(tr, sr, ti); } /* twiddle storage #1: compact, slower */ #ifdef FFTW_SINGLE # define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}, {TW_CEXP, v+2, x}, {TW_CEXP, v+3, x} #else # define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x} #endif #define TWVL1 (VL) static inline V BYTW1(const R *t, V sr) { return VZMUL(LDA(t, 2, t), sr); } static inline V BYTWJ1(const R *t, V sr) { return VZMULJ(LDA(t, 2, t), sr); } /* twiddle storage #2: twice the space, faster (when in cache) */ #ifdef FFTW_SINGLE # define VTW2(v,x) \ {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \ {TW_COS, v+2, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, {TW_COS, v+3, x}, \ {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}, \ {TW_SIN, v+2, -x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, -x}, {TW_SIN, v+3, x} #else # define VTW2(v,x) \ {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \ {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x} #endif #define TWVL2 (2 * VL) static inline V BYTW2(const R *t, V sr) { const V *twp = (const V *)t; V si = FLIP_RI(sr); V tr = twp[0], ti = twp[1]; return VFMA(tr, sr, VMUL(ti, si)); } static inline V BYTWJ2(const R *t, V sr) { const V *twp = (const V *)t; V si = FLIP_RI(sr); V tr = twp[0], ti = twp[1]; return VFNMS(ti, si, VMUL(tr, sr)); } /* twiddle storage #3 */ #define VTW3 VTW1 #define TWVL3 TWVL1 /* twiddle storage for split arrays */ #ifdef FFTW_SINGLE # define VTWS(v,x) \ {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \ {TW_COS, v+4, x}, {TW_COS, v+5, x}, {TW_COS, v+6, x}, {TW_COS, v+7, x}, \ {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}, \ {TW_SIN, v+4, x}, {TW_SIN, v+5, x}, {TW_SIN, v+6, x}, {TW_SIN, v+7, x} #else # define VTWS(v,x) \ {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \ {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x} #endif #define TWVLS (2 * VL) /* Use VZEROUPPER to avoid the penalty of switching from AVX to SSE. See Intel Optimization Manual (April 2011, version 248966), Section 11.3 */ #define VLEAVE _mm256_zeroupper #include "simd-common.h"