/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* Real-input (r2c) DFTs of rank >= 2, for the case where we are distributed across the first dimension only, and the output is transposed both in data distribution and in ordering (for the first 2 dimensions). Conversely, real-output (c2r) DFTs where the input is transposed. We don't currently support transposed-input r2c or transposed-output c2r transforms. */ #include "mpi-rdft2.h" #include "mpi-transpose.h" #include "rdft/rdft.h" #include "dft/dft.h" typedef struct { solver super; int preserve_input; /* preserve input even if DESTROY_INPUT was passed */ } S; typedef struct { plan_mpi_rdft2 super; plan *cld1, *cldt, *cld2; INT vn; int preserve_input; } P; static void apply_r2c(const plan *ego_, R *I, R *O) { const P *ego = (const P *) ego_; plan_rdft2 *cld1; plan_dft *cld2; plan_rdft *cldt; /* RDFT2 local dimensions */ cld1 = (plan_rdft2 *) ego->cld1; if (ego->preserve_input) { cld1->apply(ego->cld1, I, I+ego->vn, O, O+1); I = O; } else cld1->apply(ego->cld1, I, I+ego->vn, I, I+1); /* global transpose */ cldt = (plan_rdft *) ego->cldt; cldt->apply(ego->cldt, I, O); /* DFT final local dimension */ cld2 = (plan_dft *) ego->cld2; cld2->apply(ego->cld2, O, O+1, O, O+1); } static void apply_c2r(const plan *ego_, R *I, R *O) { const P *ego = (const P *) ego_; plan_rdft2 *cld1; plan_dft *cld2; plan_rdft *cldt; /* IDFT local dimensions */ cld2 = (plan_dft *) ego->cld2; if (ego->preserve_input) { cld2->apply(ego->cld2, I+1, I, O+1, O); I = O; } else cld2->apply(ego->cld2, I+1, I, I+1, I); /* global transpose */ cldt = (plan_rdft *) ego->cldt; cldt->apply(ego->cldt, I, O); /* RDFT2 final local dimension */ cld1 = (plan_rdft2 *) ego->cld1; cld1->apply(ego->cld1, O, O+ego->vn, O, O+1); } static int applicable(const S *ego, const problem *p_, const planner *plnr) { const problem_mpi_rdft2 *p = (const problem_mpi_rdft2 *) p_; return (1 && p->sz->rnk > 1 && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr) && p->I != p->O)) && ((p->flags == TRANSPOSED_OUT && p->kind == R2HC && XM(is_local_after)(1, p->sz, IB) && XM(is_local_after)(2, p->sz, OB) && XM(num_blocks)(p->sz->dims[0].n, p->sz->dims[0].b[OB]) == 1) || (p->flags == TRANSPOSED_IN && p->kind == HC2R && XM(is_local_after)(1, p->sz, OB) && XM(is_local_after)(2, p->sz, IB) && XM(num_blocks)(p->sz->dims[0].n, p->sz->dims[0].b[IB]) == 1)) && (!NO_SLOWP(plnr) /* slow if rdft2-serial is applicable */ || !XM(rdft2_serial_applicable)(p)) ); } static void awake(plan *ego_, enum wakefulness wakefulness) { P *ego = (P *) ego_; X(plan_awake)(ego->cld1, wakefulness); X(plan_awake)(ego->cldt, wakefulness); X(plan_awake)(ego->cld2, wakefulness); } static void destroy(plan *ego_) { P *ego = (P *) ego_; X(plan_destroy_internal)(ego->cld2); X(plan_destroy_internal)(ego->cldt); X(plan_destroy_internal)(ego->cld1); } static void print(const plan *ego_, printer *p) { const P *ego = (const P *) ego_; p->print(p, "(mpi-rdft2-rank-geq2-transposed%s%(%p%)%(%p%)%(%p%))", ego->preserve_input==2 ?"/p":"", ego->cld1, ego->cldt, ego->cld2); } static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) { const S *ego = (const S *) ego_; const problem_mpi_rdft2 *p; P *pln; plan *cld1 = 0, *cldt = 0, *cld2 = 0; R *r0, *r1, *cr, *ci, *ri, *ii, *ro, *io, *I, *O; tensor *sz; int i, my_pe, n_pes; INT nrest, n1, b1; static const plan_adt padt = { XM(rdft2_solve), awake, print, destroy }; block_kind k1, k2; UNUSED(ego); if (!applicable(ego, p_, plnr)) return (plan *) 0; p = (const problem_mpi_rdft2 *) p_; I = p->I; O = p->O; if (p->kind == R2HC) { k1 = IB; k2 = OB; r1 = (r0 = I) + p->vn; if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) { ci = (cr = O) + 1; I = O; } else ci = (cr = I) + 1; io = ii = (ro = ri = O) + 1; } else { k1 = OB; k2 = IB; r1 = (r0 = O) + p->vn; ci = (cr = O) + 1; if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) { ri = (ii = I) + 1; ro = (io = O) + 1; I = O; } else ro = ri = (io = ii = I) + 1; } MPI_Comm_rank(p->comm, &my_pe); MPI_Comm_size(p->comm, &n_pes); sz = X(mktensor)(p->sz->rnk - 1); /* tensor of last rnk-1 dimensions */ i = p->sz->rnk - 2; A(i >= 0); sz->dims[i].n = p->sz->dims[i+1].n / 2 + 1; sz->dims[i].is = sz->dims[i].os = 2 * p->vn; for (--i; i >= 0; --i) { sz->dims[i].n = p->sz->dims[i+1].n; sz->dims[i].is = sz->dims[i].os = sz->dims[i+1].n * sz->dims[i+1].is; } nrest = 1; for (i = 1; i < sz->rnk; ++i) nrest *= sz->dims[i].n; { INT ivs = 1 + (p->kind == HC2R), ovs = 1 + (p->kind == R2HC); INT is = sz->dims[0].n * sz->dims[0].is; INT b = XM(block)(p->sz->dims[0].n, p->sz->dims[0].b[k1], my_pe); sz->dims[p->sz->rnk - 2].n = p->sz->dims[p->sz->rnk - 1].n; cld1 = X(mkplan_d)(plnr, X(mkproblem_rdft2_d)(sz, X(mktensor_2d)(b, is, is, p->vn,ivs,ovs), r0, r1, cr, ci, p->kind)); if (XM(any_true)(!cld1, p->comm)) goto nada; } nrest *= p->vn; n1 = p->sz->dims[1].n; b1 = p->sz->dims[1].b[k2]; if (p->sz->rnk == 2) { /* n1 dimension is cut in ~half */ n1 = n1 / 2 + 1; b1 = b1 == p->sz->dims[1].n ? n1 : b1; } if (p->kind == R2HC) cldt = X(mkplan_d)(plnr, XM(mkproblem_transpose)( p->sz->dims[0].n, n1, nrest * 2, I, O, p->sz->dims[0].b[IB], b1, p->comm, 0)); else cldt = X(mkplan_d)(plnr, XM(mkproblem_transpose)( n1, p->sz->dims[0].n, nrest * 2, I, O, b1, p->sz->dims[0].b[OB], p->comm, 0)); if (XM(any_true)(!cldt, p->comm)) goto nada; { INT is = p->sz->dims[0].n * nrest * 2; INT b = XM(block)(n1, b1, my_pe); cld2 = X(mkplan_d)(plnr, X(mkproblem_dft_d)(X(mktensor_1d)( p->sz->dims[0].n, nrest * 2, nrest * 2), X(mktensor_2d)(b, is, is, nrest, 2, 2), ri, ii, ro, io)); if (XM(any_true)(!cld2, p->comm)) goto nada; } pln = MKPLAN_MPI_RDFT2(P, &padt, p->kind == R2HC ? apply_r2c : apply_c2r); pln->cld1 = cld1; pln->cldt = cldt; pln->cld2 = cld2; pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr); pln->vn = p->vn; X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops); X(ops_add2)(&cldt->ops, &pln->super.super.ops); return &(pln->super.super); nada: X(plan_destroy_internal)(cld2); X(plan_destroy_internal)(cldt); X(plan_destroy_internal)(cld1); return (plan *) 0; } static solver *mksolver(int preserve_input) { static const solver_adt sadt = { PROBLEM_MPI_RDFT2, mkplan, 0 }; S *slv = MKSOLVER(S, &sadt); slv->preserve_input = preserve_input; return &(slv->super); } void XM(rdft2_rank_geq2_transposed_register)(planner *p) { int preserve_input; for (preserve_input = 0; preserve_input <= 1; ++preserve_input) REGISTER_SOLVER(p, mksolver(preserve_input)); }