/**************************************************************************/ /* NOTE to users: this is the FFTW-MPI self-test and benchmark program. It is probably NOT a good place to learn FFTW usage, since it has a lot of added complexity in order to exercise and test the full API, etcetera. We suggest reading the manual. */ /**************************************************************************/ #include #include #include #include "fftw3-mpi.h" #include "tests/fftw-bench.h" #if defined(BENCHFFT_SINGLE) # define BENCH_MPI_TYPE MPI_FLOAT #elif defined(BENCHFFT_LDOUBLE) # define BENCH_MPI_TYPE MPI_LONG_DOUBLE #elif defined(BENCHFFT_QUAD) # error MPI quad-precision type is unknown #else # define BENCH_MPI_TYPE MPI_DOUBLE #endif #if SIZEOF_PTRDIFF_T == SIZEOF_INT # define FFTW_MPI_PTRDIFF_T MPI_INT #elif SIZEOF_PTRDIFF_T == SIZEOF_LONG # define FFTW_MPI_PTRDIFF_T MPI_LONG #elif SIZEOF_PTRDIFF_T == SIZEOF_LONG_LONG # define FFTW_MPI_PTRDIFF_T MPI_LONG_LONG #else # error MPI type for ptrdiff_t is unknown # define FFTW_MPI_PTRDIFF_T MPI_LONG #endif static const char *mkversion(void) { return FFTW(version); } static const char *mkcc(void) { return FFTW(cc); } static const char *mkcodelet_optim(void) { return FFTW(codelet_optim); } static const char *mknproc(void) { static char buf[32]; int ncpus; MPI_Comm_size(MPI_COMM_WORLD, &ncpus); #ifdef HAVE_SNPRINTF snprintf(buf, 32, "%d", ncpus); #else sprintf(buf, "%d", ncpus); #endif return buf; } BEGIN_BENCH_DOC BENCH_DOC("name", "fftw3_mpi") BENCH_DOCF("version", mkversion) BENCH_DOCF("cc", mkcc) BENCH_DOCF("codelet-optim", mkcodelet_optim) BENCH_DOCF("nproc", mknproc) END_BENCH_DOC static int n_pes = 1, my_pe = 0; /* global variables describing the shape of the data and its distribution */ static int rnk; static ptrdiff_t vn, iNtot, oNtot; static ptrdiff_t *local_ni=0, *local_starti=0; static ptrdiff_t *local_no=0, *local_starto=0; static ptrdiff_t *all_local_ni=0, *all_local_starti=0; /* n_pes x rnk arrays */ static ptrdiff_t *all_local_no=0, *all_local_starto=0; /* n_pes x rnk arrays */ static ptrdiff_t *istrides = 0, *ostrides = 0; static ptrdiff_t *total_ni=0, *total_no=0; static int *isend_cnt = 0, *isend_off = 0; /* for MPI_Scatterv */ static int *orecv_cnt = 0, *orecv_off = 0; /* for MPI_Gatherv */ static bench_real *local_in = 0, *local_out = 0; static bench_real *all_local_in = 0, *all_local_out = 0; static int all_local_in_alloc = 0, all_local_out_alloc = 0; static FFTW(plan) plan_scramble_in = 0, plan_unscramble_out = 0; static void alloc_rnk(int rnk_) { rnk = rnk_; bench_free(local_ni); if (rnk == 0) local_ni = 0; else local_ni = (ptrdiff_t *) bench_malloc(sizeof(ptrdiff_t) * rnk * (8 + n_pes * 4)); local_starti = local_ni + rnk; local_no = local_ni + 2 * rnk; local_starto = local_ni + 3 * rnk; istrides = local_ni + 4 * rnk; ostrides = local_ni + 5 * rnk; total_ni = local_ni + 6 * rnk; total_no = local_ni + 7 * rnk; all_local_ni = local_ni + 8 * rnk; all_local_starti = local_ni + (8 + n_pes) * rnk; all_local_no = local_ni + (8 + 2 * n_pes) * rnk; all_local_starto = local_ni + (8 + 3 * n_pes) * rnk; } static void setup_gather_scatter(void) { int i, j; ptrdiff_t off; MPI_Gather(local_ni, rnk, FFTW_MPI_PTRDIFF_T, all_local_ni, rnk, FFTW_MPI_PTRDIFF_T, 0, MPI_COMM_WORLD); MPI_Bcast(all_local_ni, rnk*n_pes, FFTW_MPI_PTRDIFF_T, 0, MPI_COMM_WORLD); MPI_Gather(local_starti, rnk, FFTW_MPI_PTRDIFF_T, all_local_starti, rnk, FFTW_MPI_PTRDIFF_T, 0, MPI_COMM_WORLD); MPI_Bcast(all_local_starti, rnk*n_pes, FFTW_MPI_PTRDIFF_T, 0, MPI_COMM_WORLD); MPI_Gather(local_no, rnk, FFTW_MPI_PTRDIFF_T, all_local_no, rnk, FFTW_MPI_PTRDIFF_T, 0, MPI_COMM_WORLD); MPI_Bcast(all_local_no, rnk*n_pes, FFTW_MPI_PTRDIFF_T, 0, MPI_COMM_WORLD); MPI_Gather(local_starto, rnk, FFTW_MPI_PTRDIFF_T, all_local_starto, rnk, FFTW_MPI_PTRDIFF_T, 0, MPI_COMM_WORLD); MPI_Bcast(all_local_starto, rnk*n_pes, FFTW_MPI_PTRDIFF_T, 0, MPI_COMM_WORLD); off = 0; for (i = 0; i < n_pes; ++i) { ptrdiff_t N = vn; for (j = 0; j < rnk; ++j) N *= all_local_ni[i * rnk + j]; isend_cnt[i] = N; isend_off[i] = off; off += N; } iNtot = off; all_local_in_alloc = 1; istrides[rnk - 1] = vn; for (j = rnk - 2; j >= 0; --j) istrides[j] = total_ni[j + 1] * istrides[j + 1]; off = 0; for (i = 0; i < n_pes; ++i) { ptrdiff_t N = vn; for (j = 0; j < rnk; ++j) N *= all_local_no[i * rnk + j]; orecv_cnt[i] = N; orecv_off[i] = off; off += N; } oNtot = off; all_local_out_alloc = 1; ostrides[rnk - 1] = vn; for (j = rnk - 2; j >= 0; --j) ostrides[j] = total_no[j + 1] * ostrides[j + 1]; } static void copy_block_out(const bench_real *in, int rnk, ptrdiff_t *n, ptrdiff_t *start, ptrdiff_t is, ptrdiff_t *os, ptrdiff_t vn, bench_real *out) { ptrdiff_t i; if (rnk == 0) { for (i = 0; i < vn; ++i) out[i] = in[i]; } else if (rnk == 1) { /* this case is just an optimization */ ptrdiff_t j; out += start[0] * os[0]; for (j = 0; j < n[0]; ++j) { for (i = 0; i < vn; ++i) out[i] = in[i]; in += is; out += os[0]; } } else { /* we should do n[0] for locality, but this way is simpler to code */ for (i = 0; i < n[rnk - 1]; ++i) copy_block_out(in + i * is, rnk - 1, n, start, is * n[rnk - 1], os, vn, out + (start[rnk - 1] + i) * os[rnk - 1]); } } static void copy_block_in(bench_real *in, int rnk, ptrdiff_t *n, ptrdiff_t *start, ptrdiff_t is, ptrdiff_t *os, ptrdiff_t vn, const bench_real *out) { ptrdiff_t i; if (rnk == 0) { for (i = 0; i < vn; ++i) in[i] = out[i]; } else if (rnk == 1) { /* this case is just an optimization */ ptrdiff_t j; out += start[0] * os[0]; for (j = 0; j < n[0]; ++j) { for (i = 0; i < vn; ++i) in[i] = out[i]; in += is; out += os[0]; } } else { /* we should do n[0] for locality, but this way is simpler to code */ for (i = 0; i < n[rnk - 1]; ++i) copy_block_in(in + i * is, rnk - 1, n, start, is * n[rnk - 1], os, vn, out + (start[rnk - 1] + i) * os[rnk - 1]); } } static void do_scatter_in(bench_real *in) { bench_real *ali; int i; if (all_local_in_alloc) { bench_free(all_local_in); all_local_in = (bench_real*) bench_malloc(iNtot*sizeof(bench_real)); all_local_in_alloc = 0; } ali = all_local_in; for (i = 0; i < n_pes; ++i) { copy_block_in(ali, rnk, all_local_ni + i * rnk, all_local_starti + i * rnk, vn, istrides, vn, in); ali += isend_cnt[i]; } MPI_Scatterv(all_local_in, isend_cnt, isend_off, BENCH_MPI_TYPE, local_in, isend_cnt[my_pe], BENCH_MPI_TYPE, 0, MPI_COMM_WORLD); } static void do_gather_out(bench_real *out) { bench_real *alo; int i; if (all_local_out_alloc) { bench_free(all_local_out); all_local_out = (bench_real*) bench_malloc(oNtot*sizeof(bench_real)); all_local_out_alloc = 0; } MPI_Gatherv(local_out, orecv_cnt[my_pe], BENCH_MPI_TYPE, all_local_out, orecv_cnt, orecv_off, BENCH_MPI_TYPE, 0, MPI_COMM_WORLD); MPI_Bcast(all_local_out, oNtot, BENCH_MPI_TYPE, 0, MPI_COMM_WORLD); alo = all_local_out; for (i = 0; i < n_pes; ++i) { copy_block_out(alo, rnk, all_local_no + i * rnk, all_local_starto + i * rnk, vn, ostrides, vn, out); alo += orecv_cnt[i]; } } static void alloc_local(ptrdiff_t nreal, int inplace) { bench_free(local_in); if (local_out != local_in) bench_free(local_out); local_in = local_out = 0; if (nreal > 0) { ptrdiff_t i; local_in = (bench_real*) bench_malloc(nreal * sizeof(bench_real)); if (inplace) local_out = local_in; else local_out = (bench_real*) bench_malloc(nreal * sizeof(bench_real)); for (i = 0; i < nreal; ++i) local_in[i] = local_out[i] = 0.0; } } void after_problem_rcopy_from(bench_problem *p, bench_real *ri) { UNUSED(p); do_scatter_in(ri); if (plan_scramble_in) FFTW(execute)(plan_scramble_in); } void after_problem_rcopy_to(bench_problem *p, bench_real *ro) { UNUSED(p); if (plan_unscramble_out) FFTW(execute)(plan_unscramble_out); do_gather_out(ro); } void after_problem_ccopy_from(bench_problem *p, bench_real *ri, bench_real *ii) { UNUSED(ii); after_problem_rcopy_from(p, ri); } void after_problem_ccopy_to(bench_problem *p, bench_real *ro, bench_real *io) { UNUSED(io); after_problem_rcopy_to(p, ro); } void after_problem_hccopy_from(bench_problem *p, bench_real *ri, bench_real *ii) { UNUSED(ii); after_problem_rcopy_from(p, ri); } void after_problem_hccopy_to(bench_problem *p, bench_real *ro, bench_real *io) { UNUSED(io); after_problem_rcopy_to(p, ro); } static FFTW(plan) mkplan_transpose_local(ptrdiff_t nx, ptrdiff_t ny, ptrdiff_t vn, bench_real *in, bench_real *out) { FFTW(iodim64) hdims[3]; FFTW(r2r_kind) k[3]; FFTW(plan) pln; hdims[0].n = nx; hdims[0].is = ny * vn; hdims[0].os = vn; hdims[1].n = ny; hdims[1].is = vn; hdims[1].os = nx * vn; hdims[2].n = vn; hdims[2].is = 1; hdims[2].os = 1; k[0] = k[1] = k[2] = FFTW_R2HC; pln = FFTW(plan_guru64_r2r)(0, 0, 3, hdims, in, out, k, FFTW_ESTIMATE); BENCH_ASSERT(pln != 0); return pln; } static int tensor_rowmajor_transposedp(bench_tensor *t) { bench_iodim *d; int i; BENCH_ASSERT(BENCH_FINITE_RNK(t->rnk)); if (t->rnk < 2) return 0; d = t->dims; if (d[0].is != d[1].is * d[1].n || d[0].os != d[1].is || d[1].os != d[0].os * d[0].n) return 0; if (t->rnk > 2 && d[1].is != d[2].is * d[2].n) return 0; for (i = 2; i + 1 < t->rnk; ++i) { d = t->dims + i; if (d[0].is != d[1].is * d[1].n || d[0].os != d[1].os * d[1].n) return 0; } if (t->rnk > 2 && t->dims[t->rnk-1].is != t->dims[t->rnk-1].os) return 0; return 1; } static int tensor_contiguousp(bench_tensor *t, int s) { return (t->dims[t->rnk-1].is == s && ((tensor_rowmajorp(t) && t->dims[t->rnk-1].is == t->dims[t->rnk-1].os) || tensor_rowmajor_transposedp(t))); } static FFTW(plan) mkplan_complex(bench_problem *p, unsigned flags) { FFTW(plan) pln = 0; int i; ptrdiff_t ntot; vn = p->vecsz->rnk == 1 ? p->vecsz->dims[0].n : 1; if (p->sz->rnk < 1 || p->split || !tensor_contiguousp(p->sz, vn) || tensor_rowmajor_transposedp(p->sz) || p->vecsz->rnk > 1 || (p->vecsz->rnk == 1 && (p->vecsz->dims[0].is != 1 || p->vecsz->dims[0].os != 1))) return 0; alloc_rnk(p->sz->rnk); for (i = 0; i < rnk; ++i) { total_ni[i] = total_no[i] = p->sz->dims[i].n; local_ni[i] = local_no[i] = total_ni[i]; local_starti[i] = local_starto[i] = 0; } if (rnk > 1) { ptrdiff_t n, start, nT, startT; ntot = FFTW(mpi_local_size_many_transposed) (p->sz->rnk, total_ni, vn, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, MPI_COMM_WORLD, &n, &start, &nT, &startT); if (flags & FFTW_MPI_TRANSPOSED_IN) { local_ni[1] = nT; local_starti[1] = startT; } else { local_ni[0] = n; local_starti[0] = start; } if (flags & FFTW_MPI_TRANSPOSED_OUT) { local_no[1] = nT; local_starto[1] = startT; } else { local_no[0] = n; local_starto[0] = start; } } else if (rnk == 1) { ntot = FFTW(mpi_local_size_many_1d) (total_ni[0], vn, MPI_COMM_WORLD, p->sign, flags, local_ni, local_starti, local_no, local_starto); } alloc_local(ntot * 2, p->in == p->out); pln = FFTW(mpi_plan_many_dft)(p->sz->rnk, total_ni, vn, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, (FFTW(complex) *) local_in, (FFTW(complex) *) local_out, MPI_COMM_WORLD, p->sign, flags); vn *= 2; if (rnk > 1) { ptrdiff_t nrest = 1; for (i = 2; i < rnk; ++i) nrest *= p->sz->dims[i].n; if (flags & FFTW_MPI_TRANSPOSED_IN) plan_scramble_in = mkplan_transpose_local( p->sz->dims[0].n, local_ni[1], vn * nrest, local_in, local_in); if (flags & FFTW_MPI_TRANSPOSED_OUT) plan_unscramble_out = mkplan_transpose_local( local_no[1], p->sz->dims[0].n, vn * nrest, local_out, local_out); } return pln; } static int tensor_real_contiguousp(bench_tensor *t, int sign, int s) { return (t->dims[t->rnk-1].is == s && ((tensor_real_rowmajorp(t, sign, 1) && t->dims[t->rnk-1].is == t->dims[t->rnk-1].os))); } static FFTW(plan) mkplan_real(bench_problem *p, unsigned flags) { FFTW(plan) pln = 0; int i; ptrdiff_t ntot; vn = p->vecsz->rnk == 1 ? p->vecsz->dims[0].n : 1; if (p->sz->rnk < 2 || p->split || !tensor_real_contiguousp(p->sz, p->sign, vn) || tensor_rowmajor_transposedp(p->sz) || p->vecsz->rnk > 1 || (p->vecsz->rnk == 1 && (p->vecsz->dims[0].is != 1 || p->vecsz->dims[0].os != 1))) return 0; alloc_rnk(p->sz->rnk); for (i = 0; i < rnk; ++i) { total_ni[i] = total_no[i] = p->sz->dims[i].n; local_ni[i] = local_no[i] = total_ni[i]; local_starti[i] = local_starto[i] = 0; } local_ni[rnk-1] = local_no[rnk-1] = total_ni[rnk-1] = total_no[rnk-1] = p->sz->dims[rnk-1].n / 2 + 1; { ptrdiff_t n, start, nT, startT; ntot = FFTW(mpi_local_size_many_transposed) (p->sz->rnk, total_ni, vn, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, MPI_COMM_WORLD, &n, &start, &nT, &startT); if (flags & FFTW_MPI_TRANSPOSED_IN) { local_ni[1] = nT; local_starti[1] = startT; } else { local_ni[0] = n; local_starti[0] = start; } if (flags & FFTW_MPI_TRANSPOSED_OUT) { local_no[1] = nT; local_starto[1] = startT; } else { local_no[0] = n; local_starto[0] = start; } } alloc_local(ntot * 2, p->in == p->out); total_ni[rnk - 1] = p->sz->dims[rnk - 1].n; if (p->sign < 0) pln = FFTW(mpi_plan_many_dft_r2c)(p->sz->rnk, total_ni, vn, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, local_in, (FFTW(complex) *) local_out, MPI_COMM_WORLD, flags); else pln = FFTW(mpi_plan_many_dft_c2r)(p->sz->rnk, total_ni, vn, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, (FFTW(complex) *) local_in, local_out, MPI_COMM_WORLD, flags); total_ni[rnk - 1] = p->sz->dims[rnk - 1].n / 2 + 1; vn *= 2; { ptrdiff_t nrest = 1; for (i = 2; i < rnk; ++i) nrest *= total_ni[i]; if (flags & FFTW_MPI_TRANSPOSED_IN) plan_scramble_in = mkplan_transpose_local( total_ni[0], local_ni[1], vn * nrest, local_in, local_in); if (flags & FFTW_MPI_TRANSPOSED_OUT) plan_unscramble_out = mkplan_transpose_local( local_no[1], total_ni[0], vn * nrest, local_out, local_out); } return pln; } static FFTW(plan) mkplan_transpose(bench_problem *p, unsigned flags) { ptrdiff_t ntot, nx, ny; int ix=0, iy=1, i; const bench_iodim *d = p->vecsz->dims; FFTW(plan) pln; if (p->vecsz->rnk == 3) { for (i = 0; i < 3; ++i) if (d[i].is == 1 && d[i].os == 1) { vn = d[i].n; ix = (i + 1) % 3; iy = (i + 2) % 3; break; } if (i == 3) return 0; } else { vn = 1; ix = 0; iy = 1; } if (d[ix].is == d[iy].n * vn && d[ix].os == vn && d[iy].os == d[ix].n * vn && d[iy].is == vn) { nx = d[ix].n; ny = d[iy].n; } else if (d[iy].is == d[ix].n * vn && d[iy].os == vn && d[ix].os == d[iy].n * vn && d[ix].is == vn) { nx = d[iy].n; ny = d[ix].n; } else return 0; alloc_rnk(2); ntot = vn * FFTW(mpi_local_size_2d_transposed)(nx, ny, MPI_COMM_WORLD, &local_ni[0], &local_starti[0], &local_no[0], &local_starto[0]); local_ni[1] = ny; local_starti[1] = 0; local_no[1] = nx; local_starto[1] = 0; total_ni[0] = nx; total_ni[1] = ny; total_no[1] = nx; total_no[0] = ny; alloc_local(ntot, p->in == p->out); pln = FFTW(mpi_plan_many_transpose)(nx, ny, vn, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, local_in, local_out, MPI_COMM_WORLD, flags); if (flags & FFTW_MPI_TRANSPOSED_IN) plan_scramble_in = mkplan_transpose_local(local_ni[0], ny, vn, local_in, local_in); if (flags & FFTW_MPI_TRANSPOSED_OUT) plan_unscramble_out = mkplan_transpose_local (nx, local_no[0], vn, local_out, local_out); #if 0 if (pln && vn == 1) { int i, j; bench_real *ri = (bench_real *) p->in; bench_real *ro = (bench_real *) p->out; if (!ri || !ro) return pln; setup_gather_scatter(); for (i = 0; i < nx * ny; ++i) ri[i] = i; after_problem_rcopy_from(p, ri); FFTW(execute)(pln); after_problem_rcopy_to(p, ro); if (my_pe == 0) { for (i = 0; i < nx; ++i) { for (j = 0; j < ny; ++j) printf(" %3g", ro[j * nx + i]); printf("\n"); } } } #endif return pln; } static FFTW(plan) mkplan_r2r(bench_problem *p, unsigned flags) { FFTW(plan) pln = 0; int i; ptrdiff_t ntot; FFTW(r2r_kind) *k; if ((p->sz->rnk == 0 || (p->sz->rnk == 1 && p->sz->dims[0].n == 1)) && p->vecsz->rnk >= 2 && p->vecsz->rnk <= 3) return mkplan_transpose(p, flags); vn = p->vecsz->rnk == 1 ? p->vecsz->dims[0].n : 1; if (p->sz->rnk < 1 || p->split || !tensor_contiguousp(p->sz, vn) || tensor_rowmajor_transposedp(p->sz) || p->vecsz->rnk > 1 || (p->vecsz->rnk == 1 && (p->vecsz->dims[0].is != 1 || p->vecsz->dims[0].os != 1))) return 0; alloc_rnk(p->sz->rnk); for (i = 0; i < rnk; ++i) { total_ni[i] = total_no[i] = p->sz->dims[i].n; local_ni[i] = local_no[i] = total_ni[i]; local_starti[i] = local_starto[i] = 0; } if (rnk > 1) { ptrdiff_t n, start, nT, startT; ntot = FFTW(mpi_local_size_many_transposed) (p->sz->rnk, total_ni, vn, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, MPI_COMM_WORLD, &n, &start, &nT, &startT); if (flags & FFTW_MPI_TRANSPOSED_IN) { local_ni[1] = nT; local_starti[1] = startT; } else { local_ni[0] = n; local_starti[0] = start; } if (flags & FFTW_MPI_TRANSPOSED_OUT) { local_no[1] = nT; local_starto[1] = startT; } else { local_no[0] = n; local_starto[0] = start; } } else if (rnk == 1) { ntot = FFTW(mpi_local_size_many_1d) (total_ni[0], vn, MPI_COMM_WORLD, p->sign, flags, local_ni, local_starti, local_no, local_starto); } alloc_local(ntot, p->in == p->out); k = (FFTW(r2r_kind) *) bench_malloc(sizeof(FFTW(r2r_kind)) * p->sz->rnk); for (i = 0; i < p->sz->rnk; ++i) switch (p->k[i]) { case R2R_R2HC: k[i] = FFTW_R2HC; break; case R2R_HC2R: k[i] = FFTW_HC2R; break; case R2R_DHT: k[i] = FFTW_DHT; break; case R2R_REDFT00: k[i] = FFTW_REDFT00; break; case R2R_REDFT01: k[i] = FFTW_REDFT01; break; case R2R_REDFT10: k[i] = FFTW_REDFT10; break; case R2R_REDFT11: k[i] = FFTW_REDFT11; break; case R2R_RODFT00: k[i] = FFTW_RODFT00; break; case R2R_RODFT01: k[i] = FFTW_RODFT01; break; case R2R_RODFT10: k[i] = FFTW_RODFT10; break; case R2R_RODFT11: k[i] = FFTW_RODFT11; break; default: BENCH_ASSERT(0); } pln = FFTW(mpi_plan_many_r2r)(p->sz->rnk, total_ni, vn, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, local_in, local_out, MPI_COMM_WORLD, k, flags); bench_free(k); if (rnk > 1) { ptrdiff_t nrest = 1; for (i = 2; i < rnk; ++i) nrest *= p->sz->dims[i].n; if (flags & FFTW_MPI_TRANSPOSED_IN) plan_scramble_in = mkplan_transpose_local( p->sz->dims[0].n, local_ni[1], vn * nrest, local_in, local_in); if (flags & FFTW_MPI_TRANSPOSED_OUT) plan_unscramble_out = mkplan_transpose_local( local_no[1], p->sz->dims[0].n, vn * nrest, local_out, local_out); } return pln; } FFTW(plan) mkplan(bench_problem *p, unsigned flags) { FFTW(plan) pln = 0; FFTW(destroy_plan)(plan_scramble_in); plan_scramble_in = 0; FFTW(destroy_plan)(plan_unscramble_out); plan_unscramble_out = 0; if (p->scrambled_in) { if (p->sz->rnk == 1 && p->sz->dims[0].n != 1) flags |= FFTW_MPI_SCRAMBLED_IN; else flags |= FFTW_MPI_TRANSPOSED_IN; } if (p->scrambled_out) { if (p->sz->rnk == 1 && p->sz->dims[0].n != 1) flags |= FFTW_MPI_SCRAMBLED_OUT; else flags |= FFTW_MPI_TRANSPOSED_OUT; } switch (p->kind) { case PROBLEM_COMPLEX: pln =mkplan_complex(p, flags); break; case PROBLEM_REAL: pln = mkplan_real(p, flags); break; case PROBLEM_R2R: pln = mkplan_r2r(p, flags); break; default: BENCH_ASSERT(0); } if (pln) setup_gather_scatter(); return pln; } void main_init(int *argc, char ***argv) { #ifdef HAVE_SMP # if MPI_VERSION >= 2 /* for MPI_Init_thread */ int provided; MPI_Init_thread(argc, argv, MPI_THREAD_FUNNELED, &provided); threads_ok = provided >= MPI_THREAD_FUNNELED; # else MPI_Init(argc, argv); threads_ok = 0; # endif #else MPI_Init(argc, argv); #endif MPI_Comm_rank(MPI_COMM_WORLD, &my_pe); MPI_Comm_size(MPI_COMM_WORLD, &n_pes); if (my_pe != 0) verbose = -999; no_speed_allocation = 1; /* so we can benchmark transforms > memory */ always_pad_real = 1; /* out-of-place real transforms are padded */ isend_cnt = (int *) bench_malloc(sizeof(int) * n_pes); isend_off = (int *) bench_malloc(sizeof(int) * n_pes); orecv_cnt = (int *) bench_malloc(sizeof(int) * n_pes); orecv_off = (int *) bench_malloc(sizeof(int) * n_pes); /* init_threads must be called before any other FFTW function, including mpi_init, because it has to register the threads hooks before the planner is initalized */ #ifdef HAVE_SMP if (threads_ok) { BENCH_ASSERT(FFTW(init_threads)()); } #endif FFTW(mpi_init)(); } void initial_cleanup(void) { alloc_rnk(0); alloc_local(0, 0); bench_free(all_local_in); all_local_in = 0; bench_free(all_local_out); all_local_out = 0; bench_free(isend_off); isend_off = 0; bench_free(isend_cnt); isend_cnt = 0; bench_free(orecv_off); orecv_off = 0; bench_free(orecv_cnt); orecv_cnt = 0; FFTW(destroy_plan)(plan_scramble_in); plan_scramble_in = 0; FFTW(destroy_plan)(plan_unscramble_out); plan_unscramble_out = 0; } void final_cleanup(void) { MPI_Finalize(); } void bench_exit(int status) { MPI_Abort(MPI_COMM_WORLD, status); } double bench_cost_postprocess(double cost) { double cost_max; MPI_Allreduce(&cost, &cost_max, 1, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD); return cost_max; } int import_wisdom(FILE *f) { int success = 1, sall; if (my_pe == 0) success = FFTW(import_wisdom_from_file)(f); FFTW(mpi_broadcast_wisdom)(MPI_COMM_WORLD); MPI_Allreduce(&success, &sall, 1, MPI_INT, MPI_LAND, MPI_COMM_WORLD); return sall; } void export_wisdom(FILE *f) { FFTW(mpi_gather_wisdom)(MPI_COMM_WORLD); if (my_pe == 0) FFTW(export_wisdom_to_file)(f); }