/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ #include "mpi-dft.h" static void destroy(problem *ego_) { problem_mpi_dft *ego = (problem_mpi_dft *) ego_; XM(dtensor_destroy)(ego->sz); MPI_Comm_free(&ego->comm); X(ifree)(ego_); } static void hash(const problem *p_, md5 *m) { const problem_mpi_dft *p = (const problem_mpi_dft *) p_; int i; X(md5puts)(m, "mpi-dft"); X(md5int)(m, p->I == p->O); /* don't include alignment -- may differ between processes X(md5int)(m, X(ialignment_of)(p->I)); X(md5int)(m, X(ialignment_of)(p->O)); ... note that applicability of MPI plans does not depend on alignment (although optimality may, in principle). */ XM(dtensor_md5)(m, p->sz); X(md5INT)(m, p->vn); X(md5int)(m, p->sign); X(md5int)(m, p->flags); MPI_Comm_size(p->comm, &i); X(md5int)(m, i); A(XM(md5_equal)(*m, p->comm)); } static void print(const problem *ego_, printer *p) { const problem_mpi_dft *ego = (const problem_mpi_dft *) ego_; int i; p->print(p, "(mpi-dft %d %d %d ", ego->I == ego->O, X(ialignment_of)(ego->I), X(ialignment_of)(ego->O)); XM(dtensor_print)(ego->sz, p); p->print(p, " %D %d %d", ego->vn, ego->sign, ego->flags); MPI_Comm_size(ego->comm, &i); p->print(p, " %d)", i); } static void zero(const problem *ego_) { const problem_mpi_dft *ego = (const problem_mpi_dft *) ego_; R *I = ego->I; INT i, N; int my_pe; MPI_Comm_rank(ego->comm, &my_pe); N = 2 * ego->vn * XM(total_block)(ego->sz, IB, my_pe); for (i = 0; i < N; ++i) I[i] = K(0.0); } static const problem_adt padt = { PROBLEM_MPI_DFT, hash, zero, print, destroy }; problem *XM(mkproblem_dft)(const dtensor *sz, INT vn, R *I, R *O, MPI_Comm comm, int sign, unsigned flags) { problem_mpi_dft *ego = (problem_mpi_dft *)X(mkproblem)(sizeof(problem_mpi_dft), &padt); int n_pes; A(XM(dtensor_validp)(sz) && FINITE_RNK(sz->rnk)); MPI_Comm_size(comm, &n_pes); A(n_pes >= XM(num_blocks_total)(sz, IB) && n_pes >= XM(num_blocks_total)(sz, OB)); A(vn >= 0); A(sign == -1 || sign == 1); /* enforce pointer equality if untainted pointers are equal */ if (UNTAINT(I) == UNTAINT(O)) I = O = JOIN_TAINT(I, O); ego->sz = XM(dtensor_canonical)(sz, 1); ego->vn = vn; ego->I = I; ego->O = O; ego->sign = sign; /* canonicalize: replace TRANSPOSED_IN with TRANSPOSED_OUT by swapping the first two dimensions (for rnk > 1) */ if ((flags & TRANSPOSED_IN) && ego->sz->rnk > 1) { ddim dim0 = ego->sz->dims[0]; ego->sz->dims[0] = ego->sz->dims[1]; ego->sz->dims[1] = dim0; flags &= ~TRANSPOSED_IN; flags ^= TRANSPOSED_OUT; } ego->flags = flags; MPI_Comm_dup(comm, &ego->comm); return &(ego->super); } problem *XM(mkproblem_dft_d)(dtensor *sz, INT vn, R *I, R *O, MPI_Comm comm, int sign, unsigned flags) { problem *p = XM(mkproblem_dft)(sz, vn, I, O, comm, sign, flags); XM(dtensor_destroy)(sz); return p; }