/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Tue Sep 14 10:46:00 EDT 2021 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_twidsq_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 5 -dif -name q1fv_5 -include dft/simd/q1f.h */ /* * This function contains 100 FP additions, 95 FP multiplications, * (or, 55 additions, 50 multiplications, 45 fused multiply/add), * 44 stack variables, 4 constants, and 50 memory accesses */ #include "dft/simd/q1f.h" static void q1fv_5(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) { DVK(KP559016994, +0.559016994374947424102293417182819058860154590); DVK(KP250000000, +0.250000000000000000000000000000000000000000000); DVK(KP618033988, +0.618033988749894848204586834365638117720309180); DVK(KP951056516, +0.951056516295153572116439333379382143405698634); { INT m; R *x; x = ri; for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(10, rs), MAKE_VOLATILE_STRIDE(10, vs)) { V T1, Ta, Ti, Te, T8, T9, T1j, T1s, T1A, T1w, T1q, T1r, Tl, Tu, TC; V Ty, Ts, Tt, TF, TO, TW, TS, TM, TN, TZ, T18, T1g, T1c, T16, T17; { V T7, Td, T4, Tc; T1 = LD(&(x[0]), ms, &(x[0])); { V T5, T6, T2, T3; T5 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); T6 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); T7 = VADD(T5, T6); Td = VSUB(T5, T6); T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); T3 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); T4 = VADD(T2, T3); Tc = VSUB(T2, T3); } Ta = VSUB(T4, T7); Ti = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tc, Td)); Te = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Td, Tc)); T8 = VADD(T4, T7); T9 = VFNMS(LDK(KP250000000), T8, T1); } { V T1p, T1v, T1m, T1u; T1j = LD(&(x[WS(vs, 4)]), ms, &(x[WS(vs, 4)])); { V T1n, T1o, T1k, T1l; T1n = LD(&(x[WS(vs, 4) + WS(rs, 2)]), ms, &(x[WS(vs, 4)])); T1o = LD(&(x[WS(vs, 4) + WS(rs, 3)]), ms, &(x[WS(vs, 4) + WS(rs, 1)])); T1p = VADD(T1n, T1o); T1v = VSUB(T1n, T1o); T1k = LD(&(x[WS(vs, 4) + WS(rs, 1)]), ms, &(x[WS(vs, 4) + WS(rs, 1)])); T1l = LD(&(x[WS(vs, 4) + WS(rs, 4)]), ms, &(x[WS(vs, 4)])); T1m = VADD(T1k, T1l); T1u = VSUB(T1k, T1l); } T1s = VSUB(T1m, T1p); T1A = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1u, T1v)); T1w = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1v, T1u)); T1q = VADD(T1m, T1p); T1r = VFNMS(LDK(KP250000000), T1q, T1j); } { V Tr, Tx, To, Tw; Tl = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)])); { V Tp, Tq, Tm, Tn; Tp = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)])); Tq = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)])); Tr = VADD(Tp, Tq); Tx = VSUB(Tp, Tq); Tm = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)])); Tn = LD(&(x[WS(vs, 1) + WS(rs, 4)]), ms, &(x[WS(vs, 1)])); To = VADD(Tm, Tn); Tw = VSUB(Tm, Tn); } Tu = VSUB(To, Tr); TC = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tw, Tx)); Ty = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tx, Tw)); Ts = VADD(To, Tr); Tt = VFNMS(LDK(KP250000000), Ts, Tl); } { V TL, TR, TI, TQ; TF = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)])); { V TJ, TK, TG, TH; TJ = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)])); TK = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)])); TL = VADD(TJ, TK); TR = VSUB(TJ, TK); TG = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)])); TH = LD(&(x[WS(vs, 2) + WS(rs, 4)]), ms, &(x[WS(vs, 2)])); TI = VADD(TG, TH); TQ = VSUB(TG, TH); } TO = VSUB(TI, TL); TW = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TQ, TR)); TS = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TR, TQ)); TM = VADD(TI, TL); TN = VFNMS(LDK(KP250000000), TM, TF); } { V T15, T1b, T12, T1a; TZ = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)])); { V T13, T14, T10, T11; T13 = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)])); T14 = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)])); T15 = VADD(T13, T14); T1b = VSUB(T13, T14); T10 = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)])); T11 = LD(&(x[WS(vs, 3) + WS(rs, 4)]), ms, &(x[WS(vs, 3)])); T12 = VADD(T10, T11); T1a = VSUB(T10, T11); } T18 = VSUB(T12, T15); T1g = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1a, T1b)); T1c = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1b, T1a)); T16 = VADD(T12, T15); T17 = VFNMS(LDK(KP250000000), T16, TZ); } ST(&(x[0]), VADD(T1, T8), ms, &(x[0])); ST(&(x[WS(rs, 4)]), VADD(T1j, T1q), ms, &(x[0])); ST(&(x[WS(rs, 2)]), VADD(TF, TM), ms, &(x[0])); ST(&(x[WS(rs, 3)]), VADD(TZ, T16), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 1)]), VADD(Tl, Ts), ms, &(x[WS(rs, 1)])); { V Tj, Tk, Th, T1B, T1C, T1z; Th = VFNMS(LDK(KP559016994), Ta, T9); Tj = BYTWJ(&(W[TWVL * 2]), VFMAI(Ti, Th)); Tk = BYTWJ(&(W[TWVL * 4]), VFNMSI(Ti, Th)); ST(&(x[WS(vs, 2)]), Tj, ms, &(x[WS(vs, 2)])); ST(&(x[WS(vs, 3)]), Tk, ms, &(x[WS(vs, 3)])); T1z = VFNMS(LDK(KP559016994), T1s, T1r); T1B = BYTWJ(&(W[TWVL * 2]), VFMAI(T1A, T1z)); T1C = BYTWJ(&(W[TWVL * 4]), VFNMSI(T1A, T1z)); ST(&(x[WS(vs, 2) + WS(rs, 4)]), T1B, ms, &(x[WS(vs, 2)])); ST(&(x[WS(vs, 3) + WS(rs, 4)]), T1C, ms, &(x[WS(vs, 3)])); } { V T1h, T1i, T1f, TD, TE, TB; T1f = VFNMS(LDK(KP559016994), T18, T17); T1h = BYTWJ(&(W[TWVL * 2]), VFMAI(T1g, T1f)); T1i = BYTWJ(&(W[TWVL * 4]), VFNMSI(T1g, T1f)); ST(&(x[WS(vs, 2) + WS(rs, 3)]), T1h, ms, &(x[WS(vs, 2) + WS(rs, 1)])); ST(&(x[WS(vs, 3) + WS(rs, 3)]), T1i, ms, &(x[WS(vs, 3) + WS(rs, 1)])); TB = VFNMS(LDK(KP559016994), Tu, Tt); TD = BYTWJ(&(W[TWVL * 2]), VFMAI(TC, TB)); TE = BYTWJ(&(W[TWVL * 4]), VFNMSI(TC, TB)); ST(&(x[WS(vs, 2) + WS(rs, 1)]), TD, ms, &(x[WS(vs, 2) + WS(rs, 1)])); ST(&(x[WS(vs, 3) + WS(rs, 1)]), TE, ms, &(x[WS(vs, 3) + WS(rs, 1)])); } { V TX, TY, TV, TT, TU, TP; TV = VFNMS(LDK(KP559016994), TO, TN); TX = BYTWJ(&(W[TWVL * 2]), VFMAI(TW, TV)); TY = BYTWJ(&(W[TWVL * 4]), VFNMSI(TW, TV)); ST(&(x[WS(vs, 2) + WS(rs, 2)]), TX, ms, &(x[WS(vs, 2)])); ST(&(x[WS(vs, 3) + WS(rs, 2)]), TY, ms, &(x[WS(vs, 3)])); TP = VFMA(LDK(KP559016994), TO, TN); TT = BYTWJ(&(W[0]), VFNMSI(TS, TP)); TU = BYTWJ(&(W[TWVL * 6]), VFMAI(TS, TP)); ST(&(x[WS(vs, 1) + WS(rs, 2)]), TT, ms, &(x[WS(vs, 1)])); ST(&(x[WS(vs, 4) + WS(rs, 2)]), TU, ms, &(x[WS(vs, 4)])); } { V Tf, Tg, Tb, Tz, TA, Tv; Tb = VFMA(LDK(KP559016994), Ta, T9); Tf = BYTWJ(&(W[0]), VFNMSI(Te, Tb)); Tg = BYTWJ(&(W[TWVL * 6]), VFMAI(Te, Tb)); ST(&(x[WS(vs, 1)]), Tf, ms, &(x[WS(vs, 1)])); ST(&(x[WS(vs, 4)]), Tg, ms, &(x[WS(vs, 4)])); Tv = VFMA(LDK(KP559016994), Tu, Tt); Tz = BYTWJ(&(W[0]), VFNMSI(Ty, Tv)); TA = BYTWJ(&(W[TWVL * 6]), VFMAI(Ty, Tv)); ST(&(x[WS(vs, 1) + WS(rs, 1)]), Tz, ms, &(x[WS(vs, 1) + WS(rs, 1)])); ST(&(x[WS(vs, 4) + WS(rs, 1)]), TA, ms, &(x[WS(vs, 4) + WS(rs, 1)])); } { V T1d, T1e, T19, T1x, T1y, T1t; T19 = VFMA(LDK(KP559016994), T18, T17); T1d = BYTWJ(&(W[0]), VFNMSI(T1c, T19)); T1e = BYTWJ(&(W[TWVL * 6]), VFMAI(T1c, T19)); ST(&(x[WS(vs, 1) + WS(rs, 3)]), T1d, ms, &(x[WS(vs, 1) + WS(rs, 1)])); ST(&(x[WS(vs, 4) + WS(rs, 3)]), T1e, ms, &(x[WS(vs, 4) + WS(rs, 1)])); T1t = VFMA(LDK(KP559016994), T1s, T1r); T1x = BYTWJ(&(W[0]), VFNMSI(T1w, T1t)); T1y = BYTWJ(&(W[TWVL * 6]), VFMAI(T1w, T1t)); ST(&(x[WS(vs, 1) + WS(rs, 4)]), T1x, ms, &(x[WS(vs, 1)])); ST(&(x[WS(vs, 4) + WS(rs, 4)]), T1y, ms, &(x[WS(vs, 4)])); } } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 2), VTW(0, 3), VTW(0, 4), { TW_NEXT, VL, 0 } }; static const ct_desc desc = { 5, XSIMD_STRING("q1fv_5"), twinstr, &GENUS, { 55, 50, 45, 0 }, 0, 0, 0 }; void XSIMD(codelet_q1fv_5) (planner *p) { X(kdft_difsq_register) (p, q1fv_5, &desc); } #else /* Generated by: ../../../genfft/gen_twidsq_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 5 -dif -name q1fv_5 -include dft/simd/q1f.h */ /* * This function contains 100 FP additions, 70 FP multiplications, * (or, 85 additions, 55 multiplications, 15 fused multiply/add), * 44 stack variables, 4 constants, and 50 memory accesses */ #include "dft/simd/q1f.h" static void q1fv_5(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) { DVK(KP250000000, +0.250000000000000000000000000000000000000000000); DVK(KP587785252, +0.587785252292473129168705954639072768597652438); DVK(KP951056516, +0.951056516295153572116439333379382143405698634); DVK(KP559016994, +0.559016994374947424102293417182819058860154590); { INT m; R *x; x = ri; for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(10, rs), MAKE_VOLATILE_STRIDE(10, vs)) { V T8, T7, Th, Te, T9, Ta, T1q, T1p, T1z, T1w, T1r, T1s, Ts, Tr, TB; V Ty, Tt, Tu, TM, TL, TV, TS, TN, TO, T16, T15, T1f, T1c, T17, T18; { V T6, Td, T3, Tc; T8 = LD(&(x[0]), ms, &(x[0])); { V T4, T5, T1, T2; T4 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); T5 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); T6 = VADD(T4, T5); Td = VSUB(T4, T5); T1 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); T3 = VADD(T1, T2); Tc = VSUB(T1, T2); } T7 = VMUL(LDK(KP559016994), VSUB(T3, T6)); Th = VBYI(VFNMS(LDK(KP587785252), Tc, VMUL(LDK(KP951056516), Td))); Te = VBYI(VFMA(LDK(KP951056516), Tc, VMUL(LDK(KP587785252), Td))); T9 = VADD(T3, T6); Ta = VFNMS(LDK(KP250000000), T9, T8); } { V T1o, T1v, T1l, T1u; T1q = LD(&(x[WS(vs, 4)]), ms, &(x[WS(vs, 4)])); { V T1m, T1n, T1j, T1k; T1m = LD(&(x[WS(vs, 4) + WS(rs, 2)]), ms, &(x[WS(vs, 4)])); T1n = LD(&(x[WS(vs, 4) + WS(rs, 3)]), ms, &(x[WS(vs, 4) + WS(rs, 1)])); T1o = VADD(T1m, T1n); T1v = VSUB(T1m, T1n); T1j = LD(&(x[WS(vs, 4) + WS(rs, 1)]), ms, &(x[WS(vs, 4) + WS(rs, 1)])); T1k = LD(&(x[WS(vs, 4) + WS(rs, 4)]), ms, &(x[WS(vs, 4)])); T1l = VADD(T1j, T1k); T1u = VSUB(T1j, T1k); } T1p = VMUL(LDK(KP559016994), VSUB(T1l, T1o)); T1z = VBYI(VFNMS(LDK(KP587785252), T1u, VMUL(LDK(KP951056516), T1v))); T1w = VBYI(VFMA(LDK(KP951056516), T1u, VMUL(LDK(KP587785252), T1v))); T1r = VADD(T1l, T1o); T1s = VFNMS(LDK(KP250000000), T1r, T1q); } { V Tq, Tx, Tn, Tw; Ts = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)])); { V To, Tp, Tl, Tm; To = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)])); Tp = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)])); Tq = VADD(To, Tp); Tx = VSUB(To, Tp); Tl = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)])); Tm = LD(&(x[WS(vs, 1) + WS(rs, 4)]), ms, &(x[WS(vs, 1)])); Tn = VADD(Tl, Tm); Tw = VSUB(Tl, Tm); } Tr = VMUL(LDK(KP559016994), VSUB(Tn, Tq)); TB = VBYI(VFNMS(LDK(KP587785252), Tw, VMUL(LDK(KP951056516), Tx))); Ty = VBYI(VFMA(LDK(KP951056516), Tw, VMUL(LDK(KP587785252), Tx))); Tt = VADD(Tn, Tq); Tu = VFNMS(LDK(KP250000000), Tt, Ts); } { V TK, TR, TH, TQ; TM = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)])); { V TI, TJ, TF, TG; TI = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)])); TJ = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)])); TK = VADD(TI, TJ); TR = VSUB(TI, TJ); TF = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)])); TG = LD(&(x[WS(vs, 2) + WS(rs, 4)]), ms, &(x[WS(vs, 2)])); TH = VADD(TF, TG); TQ = VSUB(TF, TG); } TL = VMUL(LDK(KP559016994), VSUB(TH, TK)); TV = VBYI(VFNMS(LDK(KP587785252), TQ, VMUL(LDK(KP951056516), TR))); TS = VBYI(VFMA(LDK(KP951056516), TQ, VMUL(LDK(KP587785252), TR))); TN = VADD(TH, TK); TO = VFNMS(LDK(KP250000000), TN, TM); } { V T14, T1b, T11, T1a; T16 = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)])); { V T12, T13, TZ, T10; T12 = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)])); T13 = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)])); T14 = VADD(T12, T13); T1b = VSUB(T12, T13); TZ = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)])); T10 = LD(&(x[WS(vs, 3) + WS(rs, 4)]), ms, &(x[WS(vs, 3)])); T11 = VADD(TZ, T10); T1a = VSUB(TZ, T10); } T15 = VMUL(LDK(KP559016994), VSUB(T11, T14)); T1f = VBYI(VFNMS(LDK(KP587785252), T1a, VMUL(LDK(KP951056516), T1b))); T1c = VBYI(VFMA(LDK(KP951056516), T1a, VMUL(LDK(KP587785252), T1b))); T17 = VADD(T11, T14); T18 = VFNMS(LDK(KP250000000), T17, T16); } ST(&(x[0]), VADD(T8, T9), ms, &(x[0])); ST(&(x[WS(rs, 4)]), VADD(T1q, T1r), ms, &(x[0])); ST(&(x[WS(rs, 2)]), VADD(TM, TN), ms, &(x[0])); ST(&(x[WS(rs, 3)]), VADD(T16, T17), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 1)]), VADD(Ts, Tt), ms, &(x[WS(rs, 1)])); { V Tj, Tk, Ti, T1B, T1C, T1A; Ti = VSUB(Ta, T7); Tj = BYTWJ(&(W[TWVL * 2]), VADD(Th, Ti)); Tk = BYTWJ(&(W[TWVL * 4]), VSUB(Ti, Th)); ST(&(x[WS(vs, 2)]), Tj, ms, &(x[WS(vs, 2)])); ST(&(x[WS(vs, 3)]), Tk, ms, &(x[WS(vs, 3)])); T1A = VSUB(T1s, T1p); T1B = BYTWJ(&(W[TWVL * 2]), VADD(T1z, T1A)); T1C = BYTWJ(&(W[TWVL * 4]), VSUB(T1A, T1z)); ST(&(x[WS(vs, 2) + WS(rs, 4)]), T1B, ms, &(x[WS(vs, 2)])); ST(&(x[WS(vs, 3) + WS(rs, 4)]), T1C, ms, &(x[WS(vs, 3)])); } { V T1h, T1i, T1g, TD, TE, TC; T1g = VSUB(T18, T15); T1h = BYTWJ(&(W[TWVL * 2]), VADD(T1f, T1g)); T1i = BYTWJ(&(W[TWVL * 4]), VSUB(T1g, T1f)); ST(&(x[WS(vs, 2) + WS(rs, 3)]), T1h, ms, &(x[WS(vs, 2) + WS(rs, 1)])); ST(&(x[WS(vs, 3) + WS(rs, 3)]), T1i, ms, &(x[WS(vs, 3) + WS(rs, 1)])); TC = VSUB(Tu, Tr); TD = BYTWJ(&(W[TWVL * 2]), VADD(TB, TC)); TE = BYTWJ(&(W[TWVL * 4]), VSUB(TC, TB)); ST(&(x[WS(vs, 2) + WS(rs, 1)]), TD, ms, &(x[WS(vs, 2) + WS(rs, 1)])); ST(&(x[WS(vs, 3) + WS(rs, 1)]), TE, ms, &(x[WS(vs, 3) + WS(rs, 1)])); } { V TX, TY, TW, TT, TU, TP; TW = VSUB(TO, TL); TX = BYTWJ(&(W[TWVL * 2]), VADD(TV, TW)); TY = BYTWJ(&(W[TWVL * 4]), VSUB(TW, TV)); ST(&(x[WS(vs, 2) + WS(rs, 2)]), TX, ms, &(x[WS(vs, 2)])); ST(&(x[WS(vs, 3) + WS(rs, 2)]), TY, ms, &(x[WS(vs, 3)])); TP = VADD(TL, TO); TT = BYTWJ(&(W[0]), VSUB(TP, TS)); TU = BYTWJ(&(W[TWVL * 6]), VADD(TS, TP)); ST(&(x[WS(vs, 1) + WS(rs, 2)]), TT, ms, &(x[WS(vs, 1)])); ST(&(x[WS(vs, 4) + WS(rs, 2)]), TU, ms, &(x[WS(vs, 4)])); } { V Tf, Tg, Tb, Tz, TA, Tv; Tb = VADD(T7, Ta); Tf = BYTWJ(&(W[0]), VSUB(Tb, Te)); Tg = BYTWJ(&(W[TWVL * 6]), VADD(Te, Tb)); ST(&(x[WS(vs, 1)]), Tf, ms, &(x[WS(vs, 1)])); ST(&(x[WS(vs, 4)]), Tg, ms, &(x[WS(vs, 4)])); Tv = VADD(Tr, Tu); Tz = BYTWJ(&(W[0]), VSUB(Tv, Ty)); TA = BYTWJ(&(W[TWVL * 6]), VADD(Ty, Tv)); ST(&(x[WS(vs, 1) + WS(rs, 1)]), Tz, ms, &(x[WS(vs, 1) + WS(rs, 1)])); ST(&(x[WS(vs, 4) + WS(rs, 1)]), TA, ms, &(x[WS(vs, 4) + WS(rs, 1)])); } { V T1d, T1e, T19, T1x, T1y, T1t; T19 = VADD(T15, T18); T1d = BYTWJ(&(W[0]), VSUB(T19, T1c)); T1e = BYTWJ(&(W[TWVL * 6]), VADD(T1c, T19)); ST(&(x[WS(vs, 1) + WS(rs, 3)]), T1d, ms, &(x[WS(vs, 1) + WS(rs, 1)])); ST(&(x[WS(vs, 4) + WS(rs, 3)]), T1e, ms, &(x[WS(vs, 4) + WS(rs, 1)])); T1t = VADD(T1p, T1s); T1x = BYTWJ(&(W[0]), VSUB(T1t, T1w)); T1y = BYTWJ(&(W[TWVL * 6]), VADD(T1w, T1t)); ST(&(x[WS(vs, 1) + WS(rs, 4)]), T1x, ms, &(x[WS(vs, 1)])); ST(&(x[WS(vs, 4) + WS(rs, 4)]), T1y, ms, &(x[WS(vs, 4)])); } } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 2), VTW(0, 3), VTW(0, 4), { TW_NEXT, VL, 0 } }; static const ct_desc desc = { 5, XSIMD_STRING("q1fv_5"), twinstr, &GENUS, { 85, 55, 15, 0 }, 0, 0, 0 }; void XSIMD(codelet_q1fv_5) (planner *p) { X(kdft_difsq_register) (p, q1fv_5, &desc); } #endif