/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Tue Sep 14 10:44:32 EDT 2021 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 8 -name t2_8 -include dft/scalar/t.h */ /* * This function contains 74 FP additions, 50 FP multiplications, * (or, 44 additions, 20 multiplications, 30 fused multiply/add), * 48 stack variables, 1 constants, and 32 memory accesses */ #include "dft/scalar/t.h" static void t2_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT m; for (m = mb, W = W + (mb * 6); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) { E T2, T3, Tl, Tn, T5, T6, Tf, T7, Ts, Tb, To, Ti, TC, TG; { E T4, Tm, Tr, Ta, TB, TF; T2 = W[0]; T3 = W[2]; T4 = T2 * T3; Tl = W[4]; Tm = T2 * Tl; Tn = W[5]; Tr = T2 * Tn; T5 = W[1]; T6 = W[3]; Ta = T2 * T6; Tf = FMA(T5, T6, T4); T7 = FNMS(T5, T6, T4); Ts = FNMS(T5, Tl, Tr); Tb = FMA(T5, T3, Ta); To = FMA(T5, Tn, Tm); TB = Tf * Tl; TF = Tf * Tn; Ti = FNMS(T5, T3, Ta); TC = FMA(Ti, Tn, TB); TG = FNMS(Ti, Tl, TF); } { E T1, T1s, Td, T1r, Tu, TY, Tk, TW, TN, TR, T18, T1a, T1c, T1d, TA; E TI, T11, T13, T15, T16; T1 = ri[0]; T1s = ii[0]; { E T8, T9, Tc, T1q; T8 = ri[WS(rs, 4)]; T9 = T7 * T8; Tc = ii[WS(rs, 4)]; T1q = T7 * Tc; Td = FMA(Tb, Tc, T9); T1r = FNMS(Tb, T8, T1q); } { E Tp, Tq, Tt, TX; Tp = ri[WS(rs, 6)]; Tq = To * Tp; Tt = ii[WS(rs, 6)]; TX = To * Tt; Tu = FMA(Ts, Tt, Tq); TY = FNMS(Ts, Tp, TX); } { E Tg, Th, Tj, TV; Tg = ri[WS(rs, 2)]; Th = Tf * Tg; Tj = ii[WS(rs, 2)]; TV = Tf * Tj; Tk = FMA(Ti, Tj, Th); TW = FNMS(Ti, Tg, TV); } { E TK, TL, TM, T19, TO, TP, TQ, T1b; TK = ri[WS(rs, 7)]; TL = Tl * TK; TM = ii[WS(rs, 7)]; T19 = Tl * TM; TO = ri[WS(rs, 3)]; TP = T3 * TO; TQ = ii[WS(rs, 3)]; T1b = T3 * TQ; TN = FMA(Tn, TM, TL); TR = FMA(T6, TQ, TP); T18 = TN - TR; T1a = FNMS(Tn, TK, T19); T1c = FNMS(T6, TO, T1b); T1d = T1a - T1c; } { E Tx, Ty, Tz, T12, TD, TE, TH, T14; Tx = ri[WS(rs, 1)]; Ty = T2 * Tx; Tz = ii[WS(rs, 1)]; T12 = T2 * Tz; TD = ri[WS(rs, 5)]; TE = TC * TD; TH = ii[WS(rs, 5)]; T14 = TC * TH; TA = FMA(T5, Tz, Ty); TI = FMA(TG, TH, TE); T11 = TA - TI; T13 = FNMS(T5, Tx, T12); T15 = FNMS(TG, TD, T14); T16 = T13 - T15; } { E T10, T1g, T1z, T1B, T1f, T1C, T1j, T1A; { E TU, TZ, T1x, T1y; TU = T1 - Td; TZ = TW - TY; T10 = TU + TZ; T1g = TU - TZ; T1x = T1s - T1r; T1y = Tk - Tu; T1z = T1x - T1y; T1B = T1y + T1x; } { E T17, T1e, T1h, T1i; T17 = T11 + T16; T1e = T18 - T1d; T1f = T17 + T1e; T1C = T1e - T17; T1h = T16 - T11; T1i = T18 + T1d; T1j = T1h - T1i; T1A = T1h + T1i; } ri[WS(rs, 5)] = FNMS(KP707106781, T1f, T10); ii[WS(rs, 5)] = FNMS(KP707106781, T1A, T1z); ri[WS(rs, 1)] = FMA(KP707106781, T1f, T10); ii[WS(rs, 1)] = FMA(KP707106781, T1A, T1z); ri[WS(rs, 7)] = FNMS(KP707106781, T1j, T1g); ii[WS(rs, 7)] = FNMS(KP707106781, T1C, T1B); ri[WS(rs, 3)] = FMA(KP707106781, T1j, T1g); ii[WS(rs, 3)] = FMA(KP707106781, T1C, T1B); } { E Tw, T1k, T1u, T1w, TT, T1v, T1n, T1o; { E Te, Tv, T1p, T1t; Te = T1 + Td; Tv = Tk + Tu; Tw = Te + Tv; T1k = Te - Tv; T1p = TW + TY; T1t = T1r + T1s; T1u = T1p + T1t; T1w = T1t - T1p; } { E TJ, TS, T1l, T1m; TJ = TA + TI; TS = TN + TR; TT = TJ + TS; T1v = TS - TJ; T1l = T13 + T15; T1m = T1a + T1c; T1n = T1l - T1m; T1o = T1l + T1m; } ri[WS(rs, 4)] = Tw - TT; ii[WS(rs, 4)] = T1u - T1o; ri[0] = Tw + TT; ii[0] = T1o + T1u; ri[WS(rs, 6)] = T1k - T1n; ii[WS(rs, 6)] = T1w - T1v; ri[WS(rs, 2)] = T1k + T1n; ii[WS(rs, 2)] = T1v + T1w; } } } } } static const tw_instr twinstr[] = { { TW_CEXP, 0, 1 }, { TW_CEXP, 0, 3 }, { TW_CEXP, 0, 7 }, { TW_NEXT, 1, 0 } }; static const ct_desc desc = { 8, "t2_8", twinstr, &GENUS, { 44, 20, 30, 0 }, 0, 0, 0 }; void X(codelet_t2_8) (planner *p) { X(kdft_dit_register) (p, t2_8, &desc); } #else /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 8 -name t2_8 -include dft/scalar/t.h */ /* * This function contains 74 FP additions, 44 FP multiplications, * (or, 56 additions, 26 multiplications, 18 fused multiply/add), * 42 stack variables, 1 constants, and 32 memory accesses */ #include "dft/scalar/t.h" static void t2_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT m; for (m = mb, W = W + (mb * 6); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) { E T2, T5, T3, T6, T8, Tc, Tg, Ti, Tl, Tm, Tn, Tz, Tp, Tx; { E T4, Tb, T7, Ta; T2 = W[0]; T5 = W[1]; T3 = W[2]; T6 = W[3]; T4 = T2 * T3; Tb = T5 * T3; T7 = T5 * T6; Ta = T2 * T6; T8 = T4 - T7; Tc = Ta + Tb; Tg = T4 + T7; Ti = Ta - Tb; Tl = W[4]; Tm = W[5]; Tn = FMA(T2, Tl, T5 * Tm); Tz = FNMS(Ti, Tl, Tg * Tm); Tp = FNMS(T5, Tl, T2 * Tm); Tx = FMA(Tg, Tl, Ti * Tm); } { E Tf, T1i, TL, T1d, TJ, T17, TV, TY, Ts, T1j, TO, T1a, TC, T16, TQ; E TT; { E T1, T1c, Te, T1b, T9, Td; T1 = ri[0]; T1c = ii[0]; T9 = ri[WS(rs, 4)]; Td = ii[WS(rs, 4)]; Te = FMA(T8, T9, Tc * Td); T1b = FNMS(Tc, T9, T8 * Td); Tf = T1 + Te; T1i = T1c - T1b; TL = T1 - Te; T1d = T1b + T1c; } { E TF, TW, TI, TX; { E TD, TE, TG, TH; TD = ri[WS(rs, 7)]; TE = ii[WS(rs, 7)]; TF = FMA(Tl, TD, Tm * TE); TW = FNMS(Tm, TD, Tl * TE); TG = ri[WS(rs, 3)]; TH = ii[WS(rs, 3)]; TI = FMA(T3, TG, T6 * TH); TX = FNMS(T6, TG, T3 * TH); } TJ = TF + TI; T17 = TW + TX; TV = TF - TI; TY = TW - TX; } { E Tk, TM, Tr, TN; { E Th, Tj, To, Tq; Th = ri[WS(rs, 2)]; Tj = ii[WS(rs, 2)]; Tk = FMA(Tg, Th, Ti * Tj); TM = FNMS(Ti, Th, Tg * Tj); To = ri[WS(rs, 6)]; Tq = ii[WS(rs, 6)]; Tr = FMA(Tn, To, Tp * Tq); TN = FNMS(Tp, To, Tn * Tq); } Ts = Tk + Tr; T1j = Tk - Tr; TO = TM - TN; T1a = TM + TN; } { E Tw, TR, TB, TS; { E Tu, Tv, Ty, TA; Tu = ri[WS(rs, 1)]; Tv = ii[WS(rs, 1)]; Tw = FMA(T2, Tu, T5 * Tv); TR = FNMS(T5, Tu, T2 * Tv); Ty = ri[WS(rs, 5)]; TA = ii[WS(rs, 5)]; TB = FMA(Tx, Ty, Tz * TA); TS = FNMS(Tz, Ty, Tx * TA); } TC = Tw + TB; T16 = TR + TS; TQ = Tw - TB; TT = TR - TS; } { E Tt, TK, T1f, T1g; Tt = Tf + Ts; TK = TC + TJ; ri[WS(rs, 4)] = Tt - TK; ri[0] = Tt + TK; { E T19, T1e, T15, T18; T19 = T16 + T17; T1e = T1a + T1d; ii[0] = T19 + T1e; ii[WS(rs, 4)] = T1e - T19; T15 = Tf - Ts; T18 = T16 - T17; ri[WS(rs, 6)] = T15 - T18; ri[WS(rs, 2)] = T15 + T18; } T1f = TJ - TC; T1g = T1d - T1a; ii[WS(rs, 2)] = T1f + T1g; ii[WS(rs, 6)] = T1g - T1f; { E T11, T1k, T14, T1h, T12, T13; T11 = TL - TO; T1k = T1i - T1j; T12 = TT - TQ; T13 = TV + TY; T14 = KP707106781 * (T12 - T13); T1h = KP707106781 * (T12 + T13); ri[WS(rs, 7)] = T11 - T14; ii[WS(rs, 5)] = T1k - T1h; ri[WS(rs, 3)] = T11 + T14; ii[WS(rs, 1)] = T1h + T1k; } { E TP, T1m, T10, T1l, TU, TZ; TP = TL + TO; T1m = T1j + T1i; TU = TQ + TT; TZ = TV - TY; T10 = KP707106781 * (TU + TZ); T1l = KP707106781 * (TZ - TU); ri[WS(rs, 5)] = TP - T10; ii[WS(rs, 7)] = T1m - T1l; ri[WS(rs, 1)] = TP + T10; ii[WS(rs, 3)] = T1l + T1m; } } } } } } static const tw_instr twinstr[] = { { TW_CEXP, 0, 1 }, { TW_CEXP, 0, 3 }, { TW_CEXP, 0, 7 }, { TW_NEXT, 1, 0 } }; static const ct_desc desc = { 8, "t2_8", twinstr, &GENUS, { 56, 26, 18, 0 }, 0, 0, 0 }; void X(codelet_t2_8) (planner *p) { X(kdft_dit_register) (p, t2_8, &desc); } #endif