/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Tue Sep 14 10:44:27 EDT 2021 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 7 -name t1_7 -include dft/scalar/t.h */ /* * This function contains 72 FP additions, 66 FP multiplications, * (or, 18 additions, 12 multiplications, 54 fused multiply/add), * 37 stack variables, 6 constants, and 28 memory accesses */ #include "dft/scalar/t.h" static void t1_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP974927912, +0.974927912181823607018131682993931217232785801); DK(KP900968867, +0.900968867902419126236102319507445051165919162); DK(KP801937735, +0.801937735804838252472204639014890102331838324); DK(KP554958132, +0.554958132087371191422194871006410481067288862); DK(KP692021471, +0.692021471630095869627814897002069140197260599); DK(KP356895867, +0.356895867892209443894399510021300583399127187); { INT m; for (m = mb, W = W + (mb * 12); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) { E T1, T1c, Te, T1h, TR, T19, Tr, T1g, TM, T1a, TE, T1i, TW, T1b; T1 = ri[0]; T1c = ii[0]; { E T3, T6, T4, TN, T9, Tc, Ta, TP, T2, T8; T3 = ri[WS(rs, 1)]; T6 = ii[WS(rs, 1)]; T2 = W[0]; T4 = T2 * T3; TN = T2 * T6; T9 = ri[WS(rs, 6)]; Tc = ii[WS(rs, 6)]; T8 = W[10]; Ta = T8 * T9; TP = T8 * Tc; { E T7, TO, Td, TQ, T5, Tb; T5 = W[1]; T7 = FMA(T5, T6, T4); TO = FNMS(T5, T3, TN); Tb = W[11]; Td = FMA(Tb, Tc, Ta); TQ = FNMS(Tb, T9, TP); Te = T7 + Td; T1h = Td - T7; TR = TO - TQ; T19 = TO + TQ; } } { E Tg, Tj, Th, TI, Tm, Tp, Tn, TK, Tf, Tl; Tg = ri[WS(rs, 2)]; Tj = ii[WS(rs, 2)]; Tf = W[2]; Th = Tf * Tg; TI = Tf * Tj; Tm = ri[WS(rs, 5)]; Tp = ii[WS(rs, 5)]; Tl = W[8]; Tn = Tl * Tm; TK = Tl * Tp; { E Tk, TJ, Tq, TL, Ti, To; Ti = W[3]; Tk = FMA(Ti, Tj, Th); TJ = FNMS(Ti, Tg, TI); To = W[9]; Tq = FMA(To, Tp, Tn); TL = FNMS(To, Tm, TK); Tr = Tk + Tq; T1g = Tq - Tk; TM = TJ - TL; T1a = TJ + TL; } } { E Tt, Tw, Tu, TS, Tz, TC, TA, TU, Ts, Ty; Tt = ri[WS(rs, 3)]; Tw = ii[WS(rs, 3)]; Ts = W[4]; Tu = Ts * Tt; TS = Ts * Tw; Tz = ri[WS(rs, 4)]; TC = ii[WS(rs, 4)]; Ty = W[6]; TA = Ty * Tz; TU = Ty * TC; { E Tx, TT, TD, TV, Tv, TB; Tv = W[5]; Tx = FMA(Tv, Tw, Tu); TT = FNMS(Tv, Tt, TS); TB = W[7]; TD = FMA(TB, TC, TA); TV = FNMS(TB, Tz, TU); TE = Tx + TD; T1i = TD - Tx; TW = TT - TV; T1b = TT + TV; } } ri[0] = T1 + Te + Tr + TE; ii[0] = T19 + T1a + T1b + T1c; { E TG, TY, TF, TX, TH; TF = FNMS(KP356895867, Tr, Te); TG = FNMS(KP692021471, TF, TE); TX = FMA(KP554958132, TW, TR); TY = FMA(KP801937735, TX, TM); TH = FNMS(KP900968867, TG, T1); ri[WS(rs, 6)] = FNMS(KP974927912, TY, TH); ri[WS(rs, 1)] = FMA(KP974927912, TY, TH); } { E T1e, T1k, T1d, T1j, T1f; T1d = FNMS(KP356895867, T1a, T19); T1e = FNMS(KP692021471, T1d, T1b); T1j = FMA(KP554958132, T1i, T1h); T1k = FMA(KP801937735, T1j, T1g); T1f = FNMS(KP900968867, T1e, T1c); ii[WS(rs, 1)] = FMA(KP974927912, T1k, T1f); ii[WS(rs, 6)] = FNMS(KP974927912, T1k, T1f); } { E T10, T13, TZ, T12, T11; TZ = FNMS(KP356895867, Te, TE); T10 = FNMS(KP692021471, TZ, Tr); T12 = FMA(KP554958132, TM, TW); T13 = FNMS(KP801937735, T12, TR); T11 = FNMS(KP900968867, T10, T1); ri[WS(rs, 5)] = FNMS(KP974927912, T13, T11); ri[WS(rs, 2)] = FMA(KP974927912, T13, T11); } { E T1m, T1p, T1l, T1o, T1n; T1l = FNMS(KP356895867, T19, T1b); T1m = FNMS(KP692021471, T1l, T1a); T1o = FMA(KP554958132, T1g, T1i); T1p = FNMS(KP801937735, T1o, T1h); T1n = FNMS(KP900968867, T1m, T1c); ii[WS(rs, 2)] = FMA(KP974927912, T1p, T1n); ii[WS(rs, 5)] = FNMS(KP974927912, T1p, T1n); } { E T15, T18, T14, T17, T16; T14 = FNMS(KP356895867, TE, Tr); T15 = FNMS(KP692021471, T14, Te); T17 = FNMS(KP554958132, TR, TM); T18 = FNMS(KP801937735, T17, TW); T16 = FNMS(KP900968867, T15, T1); ri[WS(rs, 4)] = FNMS(KP974927912, T18, T16); ri[WS(rs, 3)] = FMA(KP974927912, T18, T16); } { E T1r, T1u, T1q, T1t, T1s; T1q = FNMS(KP356895867, T1b, T1a); T1r = FNMS(KP692021471, T1q, T19); T1t = FNMS(KP554958132, T1h, T1g); T1u = FNMS(KP801937735, T1t, T1i); T1s = FNMS(KP900968867, T1r, T1c); ii[WS(rs, 3)] = FMA(KP974927912, T1u, T1s); ii[WS(rs, 4)] = FNMS(KP974927912, T1u, T1s); } } } } static const tw_instr twinstr[] = { { TW_FULL, 0, 7 }, { TW_NEXT, 1, 0 } }; static const ct_desc desc = { 7, "t1_7", twinstr, &GENUS, { 18, 12, 54, 0 }, 0, 0, 0 }; void X(codelet_t1_7) (planner *p) { X(kdft_dit_register) (p, t1_7, &desc); } #else /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 7 -name t1_7 -include dft/scalar/t.h */ /* * This function contains 72 FP additions, 60 FP multiplications, * (or, 36 additions, 24 multiplications, 36 fused multiply/add), * 29 stack variables, 6 constants, and 28 memory accesses */ #include "dft/scalar/t.h" static void t1_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP222520933, +0.222520933956314404288902564496794759466355569); DK(KP900968867, +0.900968867902419126236102319507445051165919162); DK(KP623489801, +0.623489801858733530525004884004239810632274731); DK(KP433883739, +0.433883739117558120475768332848358754609990728); DK(KP781831482, +0.781831482468029808708444526674057750232334519); DK(KP974927912, +0.974927912181823607018131682993931217232785801); { INT m; for (m = mb, W = W + (mb * 12); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) { E T1, TR, Tc, TS, TC, TO, Tn, TT, TI, TP, Ty, TU, TF, TQ; T1 = ri[0]; TR = ii[0]; { E T6, TA, Tb, TB; { E T3, T5, T2, T4; T3 = ri[WS(rs, 1)]; T5 = ii[WS(rs, 1)]; T2 = W[0]; T4 = W[1]; T6 = FMA(T2, T3, T4 * T5); TA = FNMS(T4, T3, T2 * T5); } { E T8, Ta, T7, T9; T8 = ri[WS(rs, 6)]; Ta = ii[WS(rs, 6)]; T7 = W[10]; T9 = W[11]; Tb = FMA(T7, T8, T9 * Ta); TB = FNMS(T9, T8, T7 * Ta); } Tc = T6 + Tb; TS = Tb - T6; TC = TA - TB; TO = TA + TB; } { E Th, TG, Tm, TH; { E Te, Tg, Td, Tf; Te = ri[WS(rs, 2)]; Tg = ii[WS(rs, 2)]; Td = W[2]; Tf = W[3]; Th = FMA(Td, Te, Tf * Tg); TG = FNMS(Tf, Te, Td * Tg); } { E Tj, Tl, Ti, Tk; Tj = ri[WS(rs, 5)]; Tl = ii[WS(rs, 5)]; Ti = W[8]; Tk = W[9]; Tm = FMA(Ti, Tj, Tk * Tl); TH = FNMS(Tk, Tj, Ti * Tl); } Tn = Th + Tm; TT = Tm - Th; TI = TG - TH; TP = TG + TH; } { E Ts, TD, Tx, TE; { E Tp, Tr, To, Tq; Tp = ri[WS(rs, 3)]; Tr = ii[WS(rs, 3)]; To = W[4]; Tq = W[5]; Ts = FMA(To, Tp, Tq * Tr); TD = FNMS(Tq, Tp, To * Tr); } { E Tu, Tw, Tt, Tv; Tu = ri[WS(rs, 4)]; Tw = ii[WS(rs, 4)]; Tt = W[6]; Tv = W[7]; Tx = FMA(Tt, Tu, Tv * Tw); TE = FNMS(Tv, Tu, Tt * Tw); } Ty = Ts + Tx; TU = Tx - Ts; TF = TD - TE; TQ = TD + TE; } ri[0] = T1 + Tc + Tn + Ty; ii[0] = TO + TP + TQ + TR; { E TJ, Tz, TX, TY; TJ = FNMS(KP781831482, TF, KP974927912 * TC) - (KP433883739 * TI); Tz = FMA(KP623489801, Ty, T1) + FNMA(KP900968867, Tn, KP222520933 * Tc); ri[WS(rs, 5)] = Tz - TJ; ri[WS(rs, 2)] = Tz + TJ; TX = FNMS(KP781831482, TU, KP974927912 * TS) - (KP433883739 * TT); TY = FMA(KP623489801, TQ, TR) + FNMA(KP900968867, TP, KP222520933 * TO); ii[WS(rs, 2)] = TX + TY; ii[WS(rs, 5)] = TY - TX; } { E TL, TK, TV, TW; TL = FMA(KP781831482, TC, KP974927912 * TI) + (KP433883739 * TF); TK = FMA(KP623489801, Tc, T1) + FNMA(KP900968867, Ty, KP222520933 * Tn); ri[WS(rs, 6)] = TK - TL; ri[WS(rs, 1)] = TK + TL; TV = FMA(KP781831482, TS, KP974927912 * TT) + (KP433883739 * TU); TW = FMA(KP623489801, TO, TR) + FNMA(KP900968867, TQ, KP222520933 * TP); ii[WS(rs, 1)] = TV + TW; ii[WS(rs, 6)] = TW - TV; } { E TN, TM, TZ, T10; TN = FMA(KP433883739, TC, KP974927912 * TF) - (KP781831482 * TI); TM = FMA(KP623489801, Tn, T1) + FNMA(KP222520933, Ty, KP900968867 * Tc); ri[WS(rs, 4)] = TM - TN; ri[WS(rs, 3)] = TM + TN; TZ = FMA(KP433883739, TS, KP974927912 * TU) - (KP781831482 * TT); T10 = FMA(KP623489801, TP, TR) + FNMA(KP222520933, TQ, KP900968867 * TO); ii[WS(rs, 3)] = TZ + T10; ii[WS(rs, 4)] = T10 - TZ; } } } } static const tw_instr twinstr[] = { { TW_FULL, 0, 7 }, { TW_NEXT, 1, 0 } }; static const ct_desc desc = { 7, "t1_7", twinstr, &GENUS, { 36, 24, 36, 0 }, 0, 0, 0 }; void X(codelet_t1_7) (planner *p) { X(kdft_dit_register) (p, t1_7, &desc); } #endif