/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Tue Sep 14 10:46:28 EDT 2021 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 20 -name r2cfII_20 -dft-II -include rdft/scalar/r2cfII.h */ /* * This function contains 102 FP additions, 63 FP multiplications, * (or, 39 additions, 0 multiplications, 63 fused multiply/add), * 53 stack variables, 10 constants, and 40 memory accesses */ #include "rdft/scalar/r2cfII.h" static void r2cfII_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP707106781, +0.707106781186547524400844362104849039284835938); DK(KP690983005, +0.690983005625052575897706582817180941139845410); DK(KP447213595, +0.447213595499957939281834733746255247088123672); DK(KP552786404, +0.552786404500042060718165266253744752911876328); DK(KP809016994, +0.809016994374947424102293417182819058860154590); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP381966011, +0.381966011250105151795413165634361882279690820); DK(KP618033988, +0.618033988749894848204586834365638117720309180); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) { E Ti, T1d, T1f, T1e, Tg, T1p, TS, T1g, T1, T6, T7, T1r, T1k, T8, To; E Tp, Tv, TX, Tr, TV, Tx, TF, TC, TD, T12, TG, TK, T10, Tc, Tf; Ti = R1[WS(rs, 2)]; T1d = R0[WS(rs, 5)]; { E Ta, Tb, Td, Te; Ta = R0[WS(rs, 9)]; Tb = R0[WS(rs, 1)]; Tc = Ta - Tb; T1f = Ta + Tb; Td = R0[WS(rs, 3)]; Te = R0[WS(rs, 7)]; Tf = Td - Te; T1e = Td + Te; } Tg = FNMS(KP618033988, Tf, Tc); T1p = FMA(KP381966011, T1e, T1f); TS = FMA(KP618033988, Tc, Tf); T1g = FMA(KP381966011, T1f, T1e); { E T2, T5, T3, T4, T1i, T1j; T1 = R0[0]; T2 = R0[WS(rs, 4)]; T5 = R0[WS(rs, 6)]; T3 = R0[WS(rs, 8)]; T4 = R0[WS(rs, 2)]; T1i = T2 + T5; T1j = T3 + T4; T6 = T2 + T3 - T4 - T5; T7 = FNMS(KP250000000, T6, T1); T1r = FNMS(KP618033988, T1i, T1j); T1k = FMA(KP618033988, T1j, T1i); T8 = (T3 + T5 - T2) - T4; } { E Tn, Tu, Tt, Tq, TU; { E Tj, Tk, Tl, Tm; Tj = R1[WS(rs, 8)]; To = R1[WS(rs, 6)]; Tk = R1[0]; Tl = R1[WS(rs, 4)]; Tm = Tk + Tl; Tn = Tj - Tm; Tu = Tk - Tl; Tp = Tj + Tm; Tt = To + Tj; } Tv = FNMS(KP618033988, Tu, Tt); TX = FMA(KP618033988, Tt, Tu); Tq = FMA(KP809016994, Tp, To); Tr = FNMS(KP552786404, Tq, Tn); TU = FMA(KP447213595, Tp, Tn); TV = FNMS(KP690983005, TU, To); } { E TJ, TE, TI, TZ; Tx = R1[WS(rs, 7)]; { E Ty, Tz, TA, TB; Ty = R1[WS(rs, 1)]; TF = R1[WS(rs, 3)]; Tz = R1[WS(rs, 5)]; TA = R1[WS(rs, 9)]; TB = Tz + TA; TC = Ty + TB; TJ = Tz - TA; TE = Ty - TB; TI = TF + Ty; } TD = FMA(KP250000000, TC, Tx); T12 = FNMS(KP618033988, TI, TJ); TG = FNMS(KP552786404, TF, TE); TK = FMA(KP618033988, TJ, TI); TZ = FMA(KP447213595, TC, TE); T10 = FNMS(KP690983005, TZ, TF); } { E T19, T1w, T1c, T1x, T1a, T1b; T19 = T1 + T6; T1w = T1f + T1d - T1e; T1a = Ti + To - Tp; T1b = TC - TF - Tx; T1c = T1a + T1b; T1x = T1a - T1b; Cr[WS(csr, 2)] = FNMS(KP707106781, T1c, T19); Ci[WS(csi, 2)] = FMS(KP707106781, T1x, T1w); Cr[WS(csr, 7)] = FMA(KP707106781, T1c, T19); Ci[WS(csi, 7)] = FMA(KP707106781, T1x, T1w); } { E TT, T15, T1s, T1u, TY, T17, T13, T16; { E TR, T1q, TW, T11; TR = FMA(KP559016994, T8, T7); TT = FMA(KP951056516, TS, TR); T15 = FNMS(KP951056516, TS, TR); T1q = FNMS(KP809016994, T1p, T1d); T1s = FNMS(KP951056516, T1r, T1q); T1u = FMA(KP951056516, T1r, T1q); TW = FNMS(KP809016994, TV, Ti); TY = FMA(KP951056516, TX, TW); T17 = FNMS(KP951056516, TX, TW); T11 = FNMS(KP809016994, T10, Tx); T13 = FNMS(KP951056516, T12, T11); T16 = FMA(KP951056516, T12, T11); } { E T14, T1v, T18, T1t; T14 = TY - T13; Cr[WS(csr, 6)] = FNMS(KP707106781, T14, TT); Cr[WS(csr, 3)] = FMA(KP707106781, T14, TT); T1v = T17 + T16; Ci[WS(csi, 6)] = FMS(KP707106781, T1v, T1u); Ci[WS(csi, 3)] = FMA(KP707106781, T1v, T1u); T18 = T16 - T17; Cr[WS(csr, 8)] = FNMS(KP707106781, T18, T15); Cr[WS(csr, 1)] = FMA(KP707106781, T18, T15); T1t = TY + T13; Ci[WS(csi, 8)] = -(FMA(KP707106781, T1t, T1s)); Ci[WS(csi, 1)] = FNMS(KP707106781, T1t, T1s); } } { E Th, TN, T1l, T1n, Tw, TO, TL, TP; { E T9, T1h, Ts, TH; T9 = FNMS(KP559016994, T8, T7); Th = FNMS(KP951056516, Tg, T9); TN = FMA(KP951056516, Tg, T9); T1h = FMA(KP809016994, T1g, T1d); T1l = FMA(KP951056516, T1k, T1h); T1n = FNMS(KP951056516, T1k, T1h); Ts = FNMS(KP559016994, Tr, Ti); Tw = FNMS(KP951056516, Tv, Ts); TO = FMA(KP951056516, Tv, Ts); TH = FNMS(KP559016994, TG, TD); TL = FNMS(KP951056516, TK, TH); TP = FMA(KP951056516, TK, TH); } { E TM, T1m, TQ, T1o; TM = Tw - TL; Cr[WS(csr, 9)] = FNMS(KP707106781, TM, Th); Cr[0] = FMA(KP707106781, TM, Th); T1m = TO + TP; Ci[0] = -(FMA(KP707106781, T1m, T1l)); Ci[WS(csi, 9)] = FNMS(KP707106781, T1m, T1l); TQ = TO - TP; Cr[WS(csr, 5)] = FNMS(KP707106781, TQ, TN); Cr[WS(csr, 4)] = FMA(KP707106781, TQ, TN); T1o = Tw + TL; Ci[WS(csi, 4)] = -(FMA(KP707106781, T1o, T1n)); Ci[WS(csi, 5)] = FNMS(KP707106781, T1o, T1n); } } } } } static const kr2c_desc desc = { 20, "r2cfII_20", { 39, 0, 63, 0 }, &GENUS }; void X(codelet_r2cfII_20) (planner *p) { X(kr2c_register) (p, r2cfII_20, &desc); } #else /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 20 -name r2cfII_20 -dft-II -include rdft/scalar/r2cfII.h */ /* * This function contains 102 FP additions, 34 FP multiplications, * (or, 86 additions, 18 multiplications, 16 fused multiply/add), * 60 stack variables, 13 constants, and 40 memory accesses */ #include "rdft/scalar/r2cfII.h" static void r2cfII_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP572061402, +0.572061402817684297600072783580302076536153377); DK(KP218508012, +0.218508012224410535399650602527877556893735408); DK(KP309016994, +0.309016994374947424102293417182819058860154590); DK(KP809016994, +0.809016994374947424102293417182819058860154590); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP587785252, +0.587785252292473129168705954639072768597652438); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP176776695, +0.176776695296636881100211090526212259821208984); DK(KP395284707, +0.395284707521047416499861693054089816714944392); DK(KP672498511, +0.672498511963957326960058968885748755876783111); DK(KP415626937, +0.415626937777453428589967464113135184222253485); DK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) { E T8, TD, Tm, TN, T9, TC, TY, TE, Te, TF, Tl, TK, T12, TL, Tk; E TM, T1, T6, Tq, T1l, T1c, Tp, T1f, T1e, T1d, Ty, TW, T1g, T1m, Tx; E Tu; T8 = R1[WS(rs, 2)]; TD = KP707106781 * T8; Tm = R1[WS(rs, 7)]; TN = KP707106781 * Tm; { E Ta, TA, Td, TB, Tb, Tc; T9 = R1[WS(rs, 6)]; Ta = R1[WS(rs, 8)]; TA = T9 + Ta; Tb = R1[0]; Tc = R1[WS(rs, 4)]; Td = Tb + Tc; TB = Tb - Tc; TC = FMA(KP415626937, TA, KP672498511 * TB); TY = FNMS(KP415626937, TB, KP672498511 * TA); TE = KP395284707 * (Ta - Td); Te = Ta + Td; TF = KP176776695 * Te; } { E Tg, TJ, Tj, TI, Th, Ti; Tg = R1[WS(rs, 1)]; Tl = R1[WS(rs, 3)]; TJ = Tg + Tl; Th = R1[WS(rs, 5)]; Ti = R1[WS(rs, 9)]; Tj = Th + Ti; TI = Th - Ti; TK = FNMS(KP415626937, TJ, KP672498511 * TI); T12 = FMA(KP415626937, TI, KP672498511 * TJ); TL = KP395284707 * (Tg - Tj); Tk = Tg + Tj; TM = KP176776695 * Tk; } { E T2, T5, T3, T4, T1a, T1b; T1 = R0[0]; T2 = R0[WS(rs, 6)]; T5 = R0[WS(rs, 8)]; T3 = R0[WS(rs, 2)]; T4 = R0[WS(rs, 4)]; T1a = T4 + T2; T1b = T5 + T3; T6 = T2 + T3 - (T4 + T5); Tq = FMA(KP250000000, T6, T1); T1l = FNMS(KP951056516, T1b, KP587785252 * T1a); T1c = FMA(KP951056516, T1a, KP587785252 * T1b); Tp = KP559016994 * (T5 + T2 - (T4 + T3)); } T1f = R0[WS(rs, 5)]; { E Tv, Tw, Ts, Tt; Tv = R0[WS(rs, 9)]; Tw = R0[WS(rs, 1)]; Tx = Tv - Tw; T1e = Tv + Tw; Ts = R0[WS(rs, 3)]; Tt = R0[WS(rs, 7)]; Tu = Ts - Tt; T1d = Ts + Tt; } Ty = FMA(KP951056516, Tu, KP587785252 * Tx); TW = FNMS(KP951056516, Tx, KP587785252 * Tu); T1g = FMA(KP809016994, T1d, KP309016994 * T1e) + T1f; T1m = FNMS(KP809016994, T1e, T1f) - (KP309016994 * T1d); { E T7, T1r, To, T1q, Tf, Tn; T7 = T1 - T6; T1r = T1e + T1f - T1d; Tf = T8 + (T9 - Te); Tn = (Tk - Tl) - Tm; To = KP707106781 * (Tf + Tn); T1q = KP707106781 * (Tf - Tn); Cr[WS(csr, 2)] = T7 - To; Ci[WS(csi, 2)] = T1q - T1r; Cr[WS(csr, 7)] = T7 + To; Ci[WS(csi, 7)] = T1q + T1r; } { E T1h, T1j, TX, T15, T10, T16, T13, T17, TV, TZ, T11; T1h = T1c - T1g; T1j = T1c + T1g; TV = Tq - Tp; TX = TV - TW; T15 = TV + TW; TZ = FMA(KP218508012, T9, TD) + TF - TE; T10 = TY + TZ; T16 = TZ - TY; T11 = FNMS(KP218508012, Tl, TL) - (TM + TN); T13 = T11 - T12; T17 = T11 + T12; { E T14, T19, T18, T1i; T14 = T10 + T13; Cr[WS(csr, 5)] = TX - T14; Cr[WS(csr, 4)] = TX + T14; T19 = T17 - T16; Ci[WS(csi, 5)] = T19 - T1h; Ci[WS(csi, 4)] = T19 + T1h; T18 = T16 + T17; Cr[WS(csr, 9)] = T15 - T18; Cr[0] = T15 + T18; T1i = T13 - T10; Ci[0] = T1i - T1j; Ci[WS(csi, 9)] = T1i + T1j; } } { E T1n, T1p, Tz, TR, TH, TS, TP, TT, Tr, TG, TO; T1n = T1l + T1m; T1p = T1m - T1l; Tr = Tp + Tq; Tz = Tr + Ty; TR = Tr - Ty; TG = TD + TE + FNMS(KP572061402, T9, TF); TH = TC + TG; TS = TC - TG; TO = TL + TM + FNMS(KP572061402, Tl, TN); TP = TK - TO; TT = TK + TO; { E TQ, T1o, TU, T1k; TQ = TH + TP; Cr[WS(csr, 6)] = Tz - TQ; Cr[WS(csr, 3)] = Tz + TQ; T1o = TT - TS; Ci[WS(csi, 6)] = T1o - T1p; Ci[WS(csi, 3)] = T1o + T1p; TU = TS + TT; Cr[WS(csr, 8)] = TR - TU; Cr[WS(csr, 1)] = TR + TU; T1k = TP - TH; Ci[WS(csi, 8)] = T1k - T1n; Ci[WS(csi, 1)] = T1k + T1n; } } } } } static const kr2c_desc desc = { 20, "r2cfII_20", { 86, 18, 16, 0 }, &GENUS }; void X(codelet_r2cfII_20) (planner *p) { X(kr2c_register) (p, r2cfII_20, &desc); } #endif