/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Tue Sep 14 10:46:37 EDT 2021 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 16 -dit -name hc2cfdft_16 -include rdft/scalar/hc2cf.h */ /* * This function contains 206 FP additions, 132 FP multiplications, * (or, 136 additions, 62 multiplications, 70 fused multiply/add), * 67 stack variables, 4 constants, and 64 memory accesses */ #include "rdft/scalar/hc2cf.h" static void hc2cfdft_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP414213562, +0.414213562373095048801688724209698078569671875); DK(KP707106781, +0.707106781186547524400844362104849039284835938); DK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) { E T1f, T2e, T1c, T2g, T1K, T3D, T2W, T3H, TR, T2j, T2R, T3E, T11, T2l, T1v; E T3G, Ta, T2p, Tk, T2r, T3o, T3p, T1Y, T3z, T2G, T3w, Tv, T2u, TF, T2w; E T3r, T3s, T2b, T3A, T2L, T3x; { E T1d, T1e, T1I, T16, T1A, T1D, T1E, T1C, T1G, T1H, T2U, T1b, T1z, T2S, T1w; E T1y, T14, T15; T1d = Ip[0]; T1e = Im[0]; T1I = T1d + T1e; T14 = Ip[WS(rs, 4)]; T15 = Im[WS(rs, 4)]; T16 = T14 - T15; T1A = T14 + T15; { E T1F, T19, T1a, T1x; T1D = Rm[0]; T1E = Rp[0]; T1F = T1D - T1E; T1C = W[0]; T1G = T1C * T1F; T1H = W[1]; T2U = T1H * T1F; T19 = Rp[WS(rs, 4)]; T1a = Rm[WS(rs, 4)]; T1x = T1a - T19; T1b = T19 + T1a; T1z = W[17]; T2S = T1z * T1x; T1w = W[16]; T1y = T1w * T1x; } T1f = T1d - T1e; T2e = T1E + T1D; { E T17, T2f, T13, T18; T13 = W[14]; T17 = T13 * T16; T2f = T13 * T1b; T18 = W[15]; T1c = FNMS(T18, T1b, T17); T2g = FMA(T18, T16, T2f); } { E T1B, T1J, T2T, T2V; T1B = FNMS(T1z, T1A, T1y); T1J = FNMS(T1H, T1I, T1G); T1K = T1B + T1J; T3D = T1J - T1B; T2T = FMA(T1w, T1A, T2S); T2V = FMA(T1C, T1I, T2U); T2W = T2T + T2V; T3H = T2V - T2T; } } { E TL, T1n, TQ, T1m, T2N, T1j, T1l, TV, T1t, T10, T1s, T2P, T1p, T1r; { E TJ, TK, TO, TP, T1k; TJ = Ip[WS(rs, 2)]; TK = Im[WS(rs, 2)]; TL = TJ - TK; T1n = TJ + TK; TO = Rp[WS(rs, 2)]; TP = Rm[WS(rs, 2)]; T1k = TP - TO; TQ = TO + TP; T1m = W[9]; T2N = T1m * T1k; T1j = W[8]; T1l = T1j * T1k; } { E TT, TU, TY, TZ, T1q; TT = Ip[WS(rs, 6)]; TU = Im[WS(rs, 6)]; TV = TT - TU; T1t = TT + TU; TY = Rp[WS(rs, 6)]; TZ = Rm[WS(rs, 6)]; T1q = TZ - TY; T10 = TY + TZ; T1s = W[25]; T2P = T1s * T1q; T1p = W[24]; T1r = T1p * T1q; } { E T2O, T2Q, T1o, T1u; { E TM, T2i, TI, TN; TI = W[6]; TM = TI * TL; T2i = TI * TQ; TN = W[7]; TR = FNMS(TN, TQ, TM); T2j = FMA(TN, TL, T2i); } T2O = FMA(T1j, T1n, T2N); T2Q = FMA(T1p, T1t, T2P); T2R = T2O + T2Q; T3E = T2O - T2Q; { E TW, T2k, TS, TX; TS = W[22]; TW = TS * TV; T2k = TS * T10; TX = W[23]; T11 = FNMS(TX, T10, TW); T2l = FMA(TX, TV, T2k); } T1o = FNMS(T1m, T1n, T1l); T1u = FNMS(T1s, T1t, T1r); T1v = T1o + T1u; T3G = T1o - T1u; } } { E T4, T1Q, T9, T1N, T5, T2o, T1O, T2C, Te, T1W, Tj, T1T, Tf, T2q, T1U; E T2E, T6, Tg; { E T1, T1M, Tb, T1S; { E T2, T3, T7, T8; T2 = Ip[WS(rs, 1)]; T3 = Im[WS(rs, 1)]; T4 = T2 - T3; T1Q = T2 + T3; T7 = Rp[WS(rs, 1)]; T8 = Rm[WS(rs, 1)]; T9 = T7 + T8; T1N = T7 - T8; } T1 = W[2]; T5 = T1 * T4; T2o = T1 * T9; T1M = W[4]; T1O = T1M * T1N; T2C = T1M * T1Q; { E Tc, Td, Th, Ti; Tc = Ip[WS(rs, 5)]; Td = Im[WS(rs, 5)]; Te = Tc - Td; T1W = Tc + Td; Th = Rp[WS(rs, 5)]; Ti = Rm[WS(rs, 5)]; Tj = Th + Ti; T1T = Th - Ti; } Tb = W[18]; Tf = Tb * Te; T2q = Tb * Tj; T1S = W[20]; T1U = T1S * T1T; T2E = T1S * T1W; } T6 = W[3]; Ta = FNMS(T6, T9, T5); T2p = FMA(T6, T4, T2o); Tg = W[19]; Tk = FNMS(Tg, Tj, Tf); T2r = FMA(Tg, Te, T2q); T3o = Ta - Tk; T3p = T2p - T2r; { E T1R, T2D, T1X, T2F, T1P, T1V; T1P = W[5]; T1R = FMA(T1P, T1Q, T1O); T2D = FNMS(T1P, T1N, T2C); T1V = W[21]; T1X = FMA(T1V, T1W, T1U); T2F = FNMS(T1V, T1T, T2E); T1Y = T1R + T1X; T3z = T1X - T1R; T2G = T2D + T2F; T3w = T2F - T2D; } } { E Tp, T23, Tu, T20, Tq, T2t, T21, T2H, Tz, T29, TE, T26, TA, T2v, T27; E T2J, Tr, TB; { E Tm, T1Z, Tw, T25; { E Tn, To, Ts, Tt; Tn = Ip[WS(rs, 7)]; To = Im[WS(rs, 7)]; Tp = Tn - To; T23 = Tn + To; Ts = Rp[WS(rs, 7)]; Tt = Rm[WS(rs, 7)]; Tu = Ts + Tt; T20 = Ts - Tt; } Tm = W[26]; Tq = Tm * Tp; T2t = Tm * Tu; T1Z = W[28]; T21 = T1Z * T20; T2H = T1Z * T23; { E Tx, Ty, TC, TD; Tx = Ip[WS(rs, 3)]; Ty = Im[WS(rs, 3)]; Tz = Tx - Ty; T29 = Tx + Ty; TC = Rp[WS(rs, 3)]; TD = Rm[WS(rs, 3)]; TE = TC + TD; T26 = TC - TD; } Tw = W[10]; TA = Tw * Tz; T2v = Tw * TE; T25 = W[12]; T27 = T25 * T26; T2J = T25 * T29; } Tr = W[27]; Tv = FNMS(Tr, Tu, Tq); T2u = FMA(Tr, Tp, T2t); TB = W[11]; TF = FNMS(TB, TE, TA); T2w = FMA(TB, Tz, T2v); T3r = T2u - T2w; T3s = Tv - TF; { E T24, T2I, T2a, T2K, T22, T28; T22 = W[29]; T24 = FMA(T22, T23, T21); T2I = FNMS(T22, T20, T2H); T28 = W[13]; T2a = FMA(T28, T29, T27); T2K = FNMS(T28, T26, T2J); T2b = T24 + T2a; T3A = T2I - T2K; T2L = T2I + T2K; T3x = T2a - T24; } } { E TH, T3c, T36, T3g, T39, T3h, T1h, T32, T2d, T2A, T2y, T31, T2Y, T30, T2n; E T3b; { E Tl, TG, T34, T35; Tl = Ta + Tk; TG = Tv + TF; TH = Tl + TG; T3c = Tl - TG; T34 = T2L - T2G; T35 = T1Y - T2b; T36 = T34 + T35; T3g = T34 - T35; } { E T37, T38, T12, T1g; T37 = T1K - T1v; T38 = T2W - T2R; T39 = T37 - T38; T3h = T37 + T38; T12 = TR + T11; T1g = T1c + T1f; T1h = T12 + T1g; T32 = T1g - T12; } { E T1L, T2c, T2s, T2x; T1L = T1v + T1K; T2c = T1Y + T2b; T2d = T1L - T2c; T2A = T2c + T1L; T2s = T2p + T2r; T2x = T2u + T2w; T2y = T2s + T2x; T31 = T2x - T2s; } { E T2M, T2X, T2h, T2m; T2M = T2G + T2L; T2X = T2R + T2W; T2Y = T2M - T2X; T30 = T2M + T2X; T2h = T2e + T2g; T2m = T2j + T2l; T2n = T2h + T2m; T3b = T2h - T2m; } { E T1i, T2Z, T2z, T2B; T1i = TH + T1h; Ip[0] = KP500000000 * (T1i + T2d); Im[WS(rs, 7)] = KP500000000 * (T2d - T1i); T2Z = T2n + T2y; Rm[WS(rs, 7)] = KP500000000 * (T2Z - T30); Rp[0] = KP500000000 * (T2Z + T30); T2z = T2n - T2y; Rm[WS(rs, 3)] = KP500000000 * (T2z - T2A); Rp[WS(rs, 4)] = KP500000000 * (T2z + T2A); T2B = T1h - TH; Ip[WS(rs, 4)] = KP500000000 * (T2B + T2Y); Im[WS(rs, 3)] = KP500000000 * (T2Y - T2B); } { E T33, T3a, T3j, T3k; T33 = T31 + T32; T3a = T36 + T39; Ip[WS(rs, 2)] = KP500000000 * (FMA(KP707106781, T3a, T33)); Im[WS(rs, 5)] = -(KP500000000 * (FNMS(KP707106781, T3a, T33))); T3j = T3b + T3c; T3k = T3g + T3h; Rm[WS(rs, 5)] = KP500000000 * (FNMS(KP707106781, T3k, T3j)); Rp[WS(rs, 2)] = KP500000000 * (FMA(KP707106781, T3k, T3j)); } { E T3d, T3e, T3f, T3i; T3d = T3b - T3c; T3e = T39 - T36; Rm[WS(rs, 1)] = KP500000000 * (FNMS(KP707106781, T3e, T3d)); Rp[WS(rs, 6)] = KP500000000 * (FMA(KP707106781, T3e, T3d)); T3f = T32 - T31; T3i = T3g - T3h; Ip[WS(rs, 6)] = KP500000000 * (FMA(KP707106781, T3i, T3f)); Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP707106781, T3i, T3f))); } } { E T3n, T3Z, T44, T4e, T47, T4f, T3u, T4a, T3C, T3U, T3N, T49, T3Q, T40, T3J; E T3V; { E T3l, T3m, T42, T43; T3l = T1f - T1c; T3m = T2j - T2l; T3n = T3l - T3m; T3Z = T3m + T3l; T42 = T3w - T3x; T43 = T3A - T3z; T44 = FMA(KP414213562, T43, T42); T4e = FNMS(KP414213562, T42, T43); } { E T45, T46, T3q, T3t; T45 = T3E + T3D; T46 = T3H - T3G; T47 = FMA(KP414213562, T46, T45); T4f = FNMS(KP414213562, T45, T46); T3q = T3o - T3p; T3t = T3r + T3s; T3u = T3q + T3t; T4a = T3q - T3t; } { E T3y, T3B, T3L, T3M; T3y = T3w + T3x; T3B = T3z + T3A; T3C = FMA(KP414213562, T3B, T3y); T3U = FNMS(KP414213562, T3y, T3B); T3L = T2e - T2g; T3M = TR - T11; T3N = T3L + T3M; T49 = T3L - T3M; } { E T3O, T3P, T3F, T3I; T3O = T3p + T3o; T3P = T3r - T3s; T3Q = T3O + T3P; T40 = T3P - T3O; T3F = T3D - T3E; T3I = T3G + T3H; T3J = FNMS(KP414213562, T3I, T3F); T3V = FMA(KP414213562, T3F, T3I); } { E T3v, T3K, T3X, T3Y; T3v = FMA(KP707106781, T3u, T3n); T3K = T3C + T3J; Ip[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T3K, T3v)); Im[WS(rs, 6)] = -(KP500000000 * (FNMS(KP923879532, T3K, T3v))); T3X = FMA(KP707106781, T3Q, T3N); T3Y = T3U + T3V; Rm[WS(rs, 6)] = KP500000000 * (FNMS(KP923879532, T3Y, T3X)); Rp[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T3Y, T3X)); } { E T3R, T3S, T3T, T3W; T3R = FNMS(KP707106781, T3Q, T3N); T3S = T3J - T3C; Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP923879532, T3S, T3R)); Rp[WS(rs, 5)] = KP500000000 * (FMA(KP923879532, T3S, T3R)); T3T = FNMS(KP707106781, T3u, T3n); T3W = T3U - T3V; Ip[WS(rs, 5)] = KP500000000 * (FMA(KP923879532, T3W, T3T)); Im[WS(rs, 2)] = -(KP500000000 * (FNMS(KP923879532, T3W, T3T))); } { E T41, T48, T4h, T4i; T41 = FNMS(KP707106781, T40, T3Z); T48 = T44 - T47; Ip[WS(rs, 7)] = KP500000000 * (FMA(KP923879532, T48, T41)); Im[0] = -(KP500000000 * (FNMS(KP923879532, T48, T41))); T4h = FNMS(KP707106781, T4a, T49); T4i = T4e + T4f; Rp[WS(rs, 7)] = KP500000000 * (FNMS(KP923879532, T4i, T4h)); Rm[0] = KP500000000 * (FMA(KP923879532, T4i, T4h)); } { E T4b, T4c, T4d, T4g; T4b = FMA(KP707106781, T4a, T49); T4c = T44 + T47; Rm[WS(rs, 4)] = KP500000000 * (FNMS(KP923879532, T4c, T4b)); Rp[WS(rs, 3)] = KP500000000 * (FMA(KP923879532, T4c, T4b)); T4d = FMA(KP707106781, T40, T3Z); T4g = T4e - T4f; Ip[WS(rs, 3)] = KP500000000 * (FMA(KP923879532, T4g, T4d)); Im[WS(rs, 4)] = -(KP500000000 * (FNMS(KP923879532, T4g, T4d))); } } } } } static const tw_instr twinstr[] = { { TW_FULL, 1, 16 }, { TW_NEXT, 1, 0 } }; static const hc2c_desc desc = { 16, "hc2cfdft_16", twinstr, &GENUS, { 136, 62, 70, 0 } }; void X(codelet_hc2cfdft_16) (planner *p) { X(khc2c_register) (p, hc2cfdft_16, &desc, HC2C_VIA_DFT); } #else /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 16 -dit -name hc2cfdft_16 -include rdft/scalar/hc2cf.h */ /* * This function contains 206 FP additions, 100 FP multiplications, * (or, 168 additions, 62 multiplications, 38 fused multiply/add), * 61 stack variables, 4 constants, and 64 memory accesses */ #include "rdft/scalar/hc2cf.h" static void hc2cfdft_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP461939766, +0.461939766255643378064091594698394143411208313); DK(KP191341716, +0.191341716182544885864229992015199433380672281); DK(KP353553390, +0.353553390593273762200422181052424519642417969); DK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) { E T19, T3h, T21, T2Y, T1o, T3d, T2s, T39, TW, T3i, T24, T2Z, T1z, T3c, T2p; E T3a, Tj, T2S, T28, T2R, T1L, T36, T2i, T32, TC, T2V, T2b, T2U, T1W, T35; E T2l, T33; { E T10, T1m, T14, T1k, T18, T1h, T1f, T1Z; { E TY, TZ, T12, T13; TY = Ip[WS(rs, 4)]; TZ = Im[WS(rs, 4)]; T10 = TY - TZ; T1m = TY + TZ; T12 = Rp[WS(rs, 4)]; T13 = Rm[WS(rs, 4)]; T14 = T12 + T13; T1k = T12 - T13; } { E T16, T17, T1d, T1e; T16 = Ip[0]; T17 = Im[0]; T18 = T16 - T17; T1h = T16 + T17; T1d = Rm[0]; T1e = Rp[0]; T1f = T1d - T1e; T1Z = T1e + T1d; } { E T15, T20, TX, T11; TX = W[14]; T11 = W[15]; T15 = FNMS(T11, T14, TX * T10); T20 = FMA(TX, T14, T11 * T10); T19 = T15 + T18; T3h = T1Z - T20; T21 = T1Z + T20; T2Y = T18 - T15; } { E T1i, T2r, T1n, T2q; { E T1c, T1g, T1j, T1l; T1c = W[0]; T1g = W[1]; T1i = FNMS(T1g, T1h, T1c * T1f); T2r = FMA(T1g, T1f, T1c * T1h); T1j = W[16]; T1l = W[17]; T1n = FMA(T1j, T1k, T1l * T1m); T2q = FNMS(T1l, T1k, T1j * T1m); } T1o = T1i - T1n; T3d = T2r - T2q; T2s = T2q + T2r; T39 = T1n + T1i; } } { E TH, T1s, TL, T1q, TQ, T1x, TU, T1v; { E TF, TG, TJ, TK; TF = Ip[WS(rs, 2)]; TG = Im[WS(rs, 2)]; TH = TF - TG; T1s = TF + TG; TJ = Rp[WS(rs, 2)]; TK = Rm[WS(rs, 2)]; TL = TJ + TK; T1q = TJ - TK; } { E TO, TP, TS, TT; TO = Ip[WS(rs, 6)]; TP = Im[WS(rs, 6)]; TQ = TO - TP; T1x = TO + TP; TS = Rp[WS(rs, 6)]; TT = Rm[WS(rs, 6)]; TU = TS + TT; T1v = TS - TT; } { E TM, T22, TV, T23; { E TE, TI, TN, TR; TE = W[6]; TI = W[7]; TM = FNMS(TI, TL, TE * TH); T22 = FMA(TE, TL, TI * TH); TN = W[22]; TR = W[23]; TV = FNMS(TR, TU, TN * TQ); T23 = FMA(TN, TU, TR * TQ); } TW = TM + TV; T3i = TM - TV; T24 = T22 + T23; T2Z = T22 - T23; } { E T1t, T2n, T1y, T2o; { E T1p, T1r, T1u, T1w; T1p = W[8]; T1r = W[9]; T1t = FMA(T1p, T1q, T1r * T1s); T2n = FNMS(T1r, T1q, T1p * T1s); T1u = W[24]; T1w = W[25]; T1y = FMA(T1u, T1v, T1w * T1x); T2o = FNMS(T1w, T1v, T1u * T1x); } T1z = T1t + T1y; T3c = T1y - T1t; T2p = T2n + T2o; T3a = T2n - T2o; } } { E T4, T1E, T8, T1C, Td, T1J, Th, T1H; { E T2, T3, T6, T7; T2 = Ip[WS(rs, 1)]; T3 = Im[WS(rs, 1)]; T4 = T2 - T3; T1E = T2 + T3; T6 = Rp[WS(rs, 1)]; T7 = Rm[WS(rs, 1)]; T8 = T6 + T7; T1C = T6 - T7; } { E Tb, Tc, Tf, Tg; Tb = Ip[WS(rs, 5)]; Tc = Im[WS(rs, 5)]; Td = Tb - Tc; T1J = Tb + Tc; Tf = Rp[WS(rs, 5)]; Tg = Rm[WS(rs, 5)]; Th = Tf + Tg; T1H = Tf - Tg; } { E T9, T26, Ti, T27; { E T1, T5, Ta, Te; T1 = W[2]; T5 = W[3]; T9 = FNMS(T5, T8, T1 * T4); T26 = FMA(T1, T8, T5 * T4); Ta = W[18]; Te = W[19]; Ti = FNMS(Te, Th, Ta * Td); T27 = FMA(Ta, Th, Te * Td); } Tj = T9 + Ti; T2S = T26 - T27; T28 = T26 + T27; T2R = T9 - Ti; } { E T1F, T2g, T1K, T2h; { E T1B, T1D, T1G, T1I; T1B = W[4]; T1D = W[5]; T1F = FMA(T1B, T1C, T1D * T1E); T2g = FNMS(T1D, T1C, T1B * T1E); T1G = W[20]; T1I = W[21]; T1K = FMA(T1G, T1H, T1I * T1J); T2h = FNMS(T1I, T1H, T1G * T1J); } T1L = T1F + T1K; T36 = T2g - T2h; T2i = T2g + T2h; T32 = T1K - T1F; } } { E Tn, T1P, Tr, T1N, Tw, T1U, TA, T1S; { E Tl, Tm, Tp, Tq; Tl = Ip[WS(rs, 7)]; Tm = Im[WS(rs, 7)]; Tn = Tl - Tm; T1P = Tl + Tm; Tp = Rp[WS(rs, 7)]; Tq = Rm[WS(rs, 7)]; Tr = Tp + Tq; T1N = Tp - Tq; } { E Tu, Tv, Ty, Tz; Tu = Ip[WS(rs, 3)]; Tv = Im[WS(rs, 3)]; Tw = Tu - Tv; T1U = Tu + Tv; Ty = Rp[WS(rs, 3)]; Tz = Rm[WS(rs, 3)]; TA = Ty + Tz; T1S = Ty - Tz; } { E Ts, T29, TB, T2a; { E Tk, To, Tt, Tx; Tk = W[26]; To = W[27]; Ts = FNMS(To, Tr, Tk * Tn); T29 = FMA(Tk, Tr, To * Tn); Tt = W[10]; Tx = W[11]; TB = FNMS(Tx, TA, Tt * Tw); T2a = FMA(Tt, TA, Tx * Tw); } TC = Ts + TB; T2V = Ts - TB; T2b = T29 + T2a; T2U = T29 - T2a; } { E T1Q, T2j, T1V, T2k; { E T1M, T1O, T1R, T1T; T1M = W[28]; T1O = W[29]; T1Q = FMA(T1M, T1N, T1O * T1P); T2j = FNMS(T1O, T1N, T1M * T1P); T1R = W[12]; T1T = W[13]; T1V = FMA(T1R, T1S, T1T * T1U); T2k = FNMS(T1T, T1S, T1R * T1U); } T1W = T1Q + T1V; T35 = T1V - T1Q; T2l = T2j + T2k; T33 = T2j - T2k; } } { E T1b, T2f, T2u, T2w, T1Y, T2e, T2d, T2v; { E TD, T1a, T2m, T2t; TD = Tj + TC; T1a = TW + T19; T1b = TD + T1a; T2f = T1a - TD; T2m = T2i + T2l; T2t = T2p + T2s; T2u = T2m - T2t; T2w = T2m + T2t; } { E T1A, T1X, T25, T2c; T1A = T1o - T1z; T1X = T1L + T1W; T1Y = T1A - T1X; T2e = T1X + T1A; T25 = T21 + T24; T2c = T28 + T2b; T2d = T25 - T2c; T2v = T25 + T2c; } Ip[0] = KP500000000 * (T1b + T1Y); Rp[0] = KP500000000 * (T2v + T2w); Im[WS(rs, 7)] = KP500000000 * (T1Y - T1b); Rm[WS(rs, 7)] = KP500000000 * (T2v - T2w); Rm[WS(rs, 3)] = KP500000000 * (T2d - T2e); Im[WS(rs, 3)] = KP500000000 * (T2u - T2f); Rp[WS(rs, 4)] = KP500000000 * (T2d + T2e); Ip[WS(rs, 4)] = KP500000000 * (T2f + T2u); } { E T2z, T2L, T2J, T2P, T2C, T2M, T2F, T2N; { E T2x, T2y, T2H, T2I; T2x = T2b - T28; T2y = T19 - TW; T2z = KP500000000 * (T2x + T2y); T2L = KP500000000 * (T2y - T2x); T2H = T21 - T24; T2I = Tj - TC; T2J = KP500000000 * (T2H - T2I); T2P = KP500000000 * (T2H + T2I); } { E T2A, T2B, T2D, T2E; T2A = T2l - T2i; T2B = T1L - T1W; T2C = T2A + T2B; T2M = T2A - T2B; T2D = T1z + T1o; T2E = T2s - T2p; T2F = T2D - T2E; T2N = T2D + T2E; } { E T2G, T2Q, T2K, T2O; T2G = KP353553390 * (T2C + T2F); Ip[WS(rs, 2)] = T2z + T2G; Im[WS(rs, 5)] = T2G - T2z; T2Q = KP353553390 * (T2M + T2N); Rm[WS(rs, 5)] = T2P - T2Q; Rp[WS(rs, 2)] = T2P + T2Q; T2K = KP353553390 * (T2F - T2C); Rm[WS(rs, 1)] = T2J - T2K; Rp[WS(rs, 6)] = T2J + T2K; T2O = KP353553390 * (T2M - T2N); Ip[WS(rs, 6)] = T2L + T2O; Im[WS(rs, 1)] = T2O - T2L; } } { E T30, T3w, T3F, T3j, T2X, T3G, T3D, T3L, T3m, T3v, T38, T3q, T3A, T3K, T3f; E T3r; { E T2T, T2W, T34, T37; T30 = KP500000000 * (T2Y - T2Z); T3w = KP500000000 * (T2Z + T2Y); T3F = KP500000000 * (T3h - T3i); T3j = KP500000000 * (T3h + T3i); T2T = T2R - T2S; T2W = T2U + T2V; T2X = KP353553390 * (T2T + T2W); T3G = KP353553390 * (T2T - T2W); { E T3B, T3C, T3k, T3l; T3B = T3a + T39; T3C = T3d - T3c; T3D = FNMS(KP461939766, T3C, KP191341716 * T3B); T3L = FMA(KP461939766, T3B, KP191341716 * T3C); T3k = T2S + T2R; T3l = T2U - T2V; T3m = KP353553390 * (T3k + T3l); T3v = KP353553390 * (T3l - T3k); } T34 = T32 + T33; T37 = T35 - T36; T38 = FMA(KP191341716, T34, KP461939766 * T37); T3q = FNMS(KP191341716, T37, KP461939766 * T34); { E T3y, T3z, T3b, T3e; T3y = T33 - T32; T3z = T36 + T35; T3A = FMA(KP461939766, T3y, KP191341716 * T3z); T3K = FNMS(KP461939766, T3z, KP191341716 * T3y); T3b = T39 - T3a; T3e = T3c + T3d; T3f = FNMS(KP191341716, T3e, KP461939766 * T3b); T3r = FMA(KP191341716, T3b, KP461939766 * T3e); } } { E T31, T3g, T3t, T3u; T31 = T2X + T30; T3g = T38 + T3f; Ip[WS(rs, 1)] = T31 + T3g; Im[WS(rs, 6)] = T3g - T31; T3t = T3j + T3m; T3u = T3q + T3r; Rm[WS(rs, 6)] = T3t - T3u; Rp[WS(rs, 1)] = T3t + T3u; } { E T3n, T3o, T3p, T3s; T3n = T3j - T3m; T3o = T3f - T38; Rm[WS(rs, 2)] = T3n - T3o; Rp[WS(rs, 5)] = T3n + T3o; T3p = T30 - T2X; T3s = T3q - T3r; Ip[WS(rs, 5)] = T3p + T3s; Im[WS(rs, 2)] = T3s - T3p; } { E T3x, T3E, T3N, T3O; T3x = T3v + T3w; T3E = T3A + T3D; Ip[WS(rs, 3)] = T3x + T3E; Im[WS(rs, 4)] = T3E - T3x; T3N = T3F + T3G; T3O = T3K + T3L; Rm[WS(rs, 4)] = T3N - T3O; Rp[WS(rs, 3)] = T3N + T3O; } { E T3H, T3I, T3J, T3M; T3H = T3F - T3G; T3I = T3D - T3A; Rm[0] = T3H - T3I; Rp[WS(rs, 7)] = T3H + T3I; T3J = T3w - T3v; T3M = T3K - T3L; Ip[WS(rs, 7)] = T3J + T3M; Im[0] = T3M - T3J; } } } } } static const tw_instr twinstr[] = { { TW_FULL, 1, 16 }, { TW_NEXT, 1, 0 } }; static const hc2c_desc desc = { 16, "hc2cfdft_16", twinstr, &GENUS, { 168, 62, 38, 0 } }; void X(codelet_hc2cfdft_16) (planner *p) { X(khc2c_register) (p, hc2cfdft_16, &desc, HC2C_VIA_DFT); } #endif