/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Tue Sep 14 10:46:47 EDT 2021 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 7 -name r2cb_7 -include rdft/scalar/r2cb.h */ /* * This function contains 24 FP additions, 22 FP multiplications, * (or, 2 additions, 0 multiplications, 22 fused multiply/add), * 27 stack variables, 7 constants, and 14 memory accesses */ #include "rdft/scalar/r2cb.h" static void r2cb_7(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP1_949855824, +1.949855824363647214036263365987862434465571601); DK(KP801937735, +0.801937735804838252472204639014890102331838324); DK(KP1_801937735, +1.801937735804838252472204639014890102331838324); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); DK(KP692021471, +0.692021471630095869627814897002069140197260599); DK(KP356895867, +0.356895867892209443894399510021300583399127187); DK(KP554958132, +0.554958132087371191422194871006410481067288862); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(28, rs), MAKE_VOLATILE_STRIDE(28, csr), MAKE_VOLATILE_STRIDE(28, csi)) { E T1, T9, Tb, Ta, Tc, Tm, Th, T7, Tk, Tf, T5, Tl, Tn; T1 = Cr[0]; T9 = Ci[WS(csi, 2)]; Tb = Ci[WS(csi, 3)]; Ta = Ci[WS(csi, 1)]; Tc = FMA(KP554958132, Tb, Ta); Tm = FMS(KP554958132, Ta, T9); Th = FMA(KP554958132, T9, Tb); { E T2, T4, T3, T6, Tj, Te; T2 = Cr[WS(csr, 1)]; T4 = Cr[WS(csr, 3)]; T3 = Cr[WS(csr, 2)]; T6 = FNMS(KP356895867, T3, T2); Tj = FNMS(KP356895867, T4, T3); Te = FNMS(KP356895867, T2, T4); T7 = FNMS(KP692021471, T6, T4); Tk = FNMS(KP692021471, Tj, T2); Tf = FNMS(KP692021471, Te, T3); T5 = T2 + T3 + T4; } R0[0] = FMA(KP2_000000000, T5, T1); Tl = FNMS(KP1_801937735, Tk, T1); Tn = FMA(KP801937735, Tm, Tb); R1[WS(rs, 1)] = FNMS(KP1_949855824, Tn, Tl); R0[WS(rs, 2)] = FMA(KP1_949855824, Tn, Tl); { E T8, Td, Tg, Ti; T8 = FNMS(KP1_801937735, T7, T1); Td = FMA(KP801937735, Tc, T9); R1[0] = FNMS(KP1_949855824, Td, T8); R0[WS(rs, 3)] = FMA(KP1_949855824, Td, T8); Tg = FNMS(KP1_801937735, Tf, T1); Ti = FNMS(KP801937735, Th, Ta); R0[WS(rs, 1)] = FNMS(KP1_949855824, Ti, Tg); R1[WS(rs, 2)] = FMA(KP1_949855824, Ti, Tg); } } } } static const kr2c_desc desc = { 7, "r2cb_7", { 2, 0, 22, 0 }, &GENUS }; void X(codelet_r2cb_7) (planner *p) { X(kr2c_register) (p, r2cb_7, &desc); } #else /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 7 -name r2cb_7 -include rdft/scalar/r2cb.h */ /* * This function contains 24 FP additions, 19 FP multiplications, * (or, 11 additions, 6 multiplications, 13 fused multiply/add), * 21 stack variables, 7 constants, and 14 memory accesses */ #include "rdft/scalar/r2cb.h" static void r2cb_7(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); DK(KP1_801937735, +1.801937735804838252472204639014890102331838324); DK(KP445041867, +0.445041867912628808577805128993589518932711138); DK(KP1_246979603, +1.246979603717467061050009768008479621264549462); DK(KP867767478, +0.867767478235116240951536665696717509219981456); DK(KP1_949855824, +1.949855824363647214036263365987862434465571601); DK(KP1_563662964, +1.563662964936059617416889053348115500464669037); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(28, rs), MAKE_VOLATILE_STRIDE(28, csr), MAKE_VOLATILE_STRIDE(28, csi)) { E T9, Td, Tb, T1, T4, T2, T3, T5, Tc, Ta, T6, T8, T7; T6 = Ci[WS(csi, 2)]; T8 = Ci[WS(csi, 1)]; T7 = Ci[WS(csi, 3)]; T9 = FNMS(KP1_949855824, T7, KP1_563662964 * T6) - (KP867767478 * T8); Td = FMA(KP867767478, T6, KP1_563662964 * T7) - (KP1_949855824 * T8); Tb = FMA(KP1_563662964, T8, KP1_949855824 * T6) + (KP867767478 * T7); T1 = Cr[0]; T4 = Cr[WS(csr, 3)]; T2 = Cr[WS(csr, 1)]; T3 = Cr[WS(csr, 2)]; T5 = FMA(KP1_246979603, T3, T1) + FNMA(KP445041867, T4, KP1_801937735 * T2); Tc = FMA(KP1_246979603, T4, T1) + FNMA(KP1_801937735, T3, KP445041867 * T2); Ta = FMA(KP1_246979603, T2, T1) + FNMA(KP1_801937735, T4, KP445041867 * T3); R0[WS(rs, 2)] = T5 - T9; R1[WS(rs, 1)] = T5 + T9; R0[WS(rs, 1)] = Tc + Td; R1[WS(rs, 2)] = Tc - Td; R0[WS(rs, 3)] = Ta + Tb; R1[0] = Ta - Tb; R0[0] = FMA(KP2_000000000, T2 + T3 + T4, T1); } } } static const kr2c_desc desc = { 7, "r2cb_7", { 11, 6, 13, 0 }, &GENUS }; void X(codelet_r2cb_7) (planner *p) { X(kr2c_register) (p, r2cb_7, &desc); } #endif