// By Emil Ernerfeldt 2018 // LICENSE: // This software is dual-licensed to the public domain and under the following // license: you are granted a perpetual, irrevocable license to copy, modify, // publish, and distribute this file as you see fit. #include "imgui.h" #include "imgui_internal.h" #ifndef IMGUI_DISABLE #include "imgui_sw.hpp" #include #include #include #include struct ImGui_ImplSW_Data { SDL_Window* Window; SWTexture* FontTexture; ImGui_ImplSW_Data() { memset((void*)this, 0, sizeof(*this)); } }; struct SwOptions { bool optimize_text = true;// No reason to turn this off. bool optimize_rectangles = true;// No reason to turn this off. }; static ImGui_ImplSW_Data* ImGui_ImplSW_GetBackendData() { return ImGui::GetCurrentContext() ? (ImGui_ImplSW_Data*)ImGui::GetIO().BackendRendererUserData : nullptr; } struct PaintTarget { uint32_t *pixels; int width; int height; }; // ---------------------------------------------------------------------------- #pragma pack(push, 1) union ColorInt { struct { #ifdef TA_BIG_ENDIAN uint8_t a, r, g, b; #else uint8_t b, g, r, a; #endif }; uint32_t u32; ColorInt(): u32(0) {} ColorInt(uint32_t c): u32(c) {} static ColorInt bgra(uint32_t c) { return ColorInt((c&0xff00ff00)|((c&0xff)<<16)|((c&0xff0000)>>16)); } ColorInt &operator*=(const ColorInt &other) { r = (r * other.r + 255) >> 8; g = (g * other.g + 255) >> 8; b = (b * other.b + 255) >> 8; a = (a * other.a + 255) >> 8; return *this; } }; #pragma pack(pop) static inline uint32_t blend(const ColorInt &target, const ColorInt &source) { if (source.a == 0) return target.u32; if (source.a >= 255) return source.u32; const unsigned char ia=255-source.a; return ( (target.a << 24u) | (((source.r * source.a + target.r * ia + 255) >> 8) << 16u) | (((source.g * source.a + target.g * ia + 255) >> 8) << 8u) | (((source.b * source.a + target.b * ia + 255) >> 8) << 0u) ); } // ---------------------------------------------------------------------------- // Used for interpolating vertex attributes (color and texture coordinates) in a triangle. struct Barycentric { float w0, w1, w2; }; Barycentric operator*(const float f, const Barycentric &va) { return { f * va.w0, f * va.w1, f * va.w2 }; } void operator+=(Barycentric &a, const Barycentric &b) { a.w0 += b.w0; a.w1 += b.w1; a.w2 += b.w2; } Barycentric operator+(const Barycentric &a, const Barycentric &b) { return Barycentric{ a.w0 + b.w0, a.w1 + b.w1, a.w2 + b.w2 }; } // ---------------------------------------------------------------------------- // Useful operators on ImGui vectors: ImVec2 operator*(const float f, const ImVec2 &v) { return ImVec2{ f * v.x, f * v.y }; } bool operator!=(const ImVec2 &a, const ImVec2 &b) { return a.x != b.x || a.y != b.y; } ImVec4 operator*(const float f, const ImVec4 &v) { return ImVec4{ f * v.x, f * v.y, f * v.z, f * v.w }; } // ---------------------------------------------------------------------------- // Copies of functions in ImGui, inlined for speed: inline ImVec4 color_convert_u32_to_float4(ImU32 in) { const float s = 1.0f / 255.0f; return ImVec4(((in >> IM_COL32_R_SHIFT) & 0xFF) * s, ((in >> IM_COL32_G_SHIFT) & 0xFF) * s, ((in >> IM_COL32_B_SHIFT) & 0xFF) * s, ((in >> IM_COL32_A_SHIFT) & 0xFF) * s); } inline ImU32 color_convert_float4_to_u32(const ImVec4 &in) { ImU32 out; out = uint32_t(in.x * 255.0f + 0.5f) << IM_COL32_B_SHIFT; out |= uint32_t(in.y * 255.0f + 0.5f) << IM_COL32_G_SHIFT; out |= uint32_t(in.z * 255.0f + 0.5f) << IM_COL32_R_SHIFT; out |= uint32_t(in.w * 255.0f + 0.5f) << IM_COL32_A_SHIFT; return out; } // ---------------------------------------------------------------------------- // For fast and subpixel-perfect triangle rendering we used fixed point arithmetic. // To keep the code simple we use 64 bits to avoid overflows. // TODO: make it 32-bit or else using Int = int32_t; const Int kFixedBias = 1; struct Point { Int x, y; }; Int orient2d(const Point &a, const Point &b, const Point &c) { return (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x); } Int as_int(float v) { return static_cast(floor(v * kFixedBias)); } Point as_point(ImVec2 v) { return Point{ as_int(v.x), as_int(v.y) }; } // ---------------------------------------------------------------------------- inline float min3(float a, float b, float c) { if (a < b && a < c) { return a; } return b < c ? b : c; } inline float max3(float a, float b, float c) { if (a > b && a > c) { return a; } return b > c ? b : c; } inline float barycentric(const ImVec2 &a, const ImVec2 &b, const ImVec2 &point) { return (b.x - a.x) * (point.y - a.y) - (b.y - a.y) * (point.x - a.x); } inline uint8_t sample_font_texture(const SWTexture &texture, int x, int y) { return ((const uint8_t*)texture.pixels)[x + y]; } inline uint32_t sample_texture(const SWTexture &texture, int x, int y) { return texture.pixels[x + y]; } static void paint_uniform_rectangle(const PaintTarget &target, const ImVec2 &min_f, const ImVec2 &max_f, const ColorInt &color) { // don't if our rectangle is transparent if (color.a==0) return; // Integer bounding box [min, max): int min_x_i = (int)(min_f.x + 0.5f); int min_y_i = (int)(min_f.y + 0.5f); int max_x_i = (int)(max_f.x + 0.5f); int max_y_i = (int)(max_f.y + 0.5f); // Clamp to render target: min_x_i = std::max(min_x_i, 0); min_y_i = std::max(min_y_i, 0); max_x_i = std::min(max_x_i, target.width); max_y_i = std::min(max_y_i, target.height); if (color.a==255) { // fast path if alpha blending is not necessary for (int y = min_y_i; y < max_y_i; ++y) { uint32_t* target_pixel = &target.pixels[y * target.width + min_x_i - 1]; for (int x = min_x_i; x < max_x_i; ++x) { ++target_pixel; *target_pixel = color.u32; } } } else { // We often blend the same colors over and over again, so optimize for this (saves 25% total cpu): uint32_t last_target_pixel = target.pixels[min_y_i * target.width + min_x_i]; const ColorInt* lastColorRef = (const ColorInt*)(&last_target_pixel); uint32_t last_output = blend(*lastColorRef, color); for (int y = min_y_i; y < max_y_i; ++y) { uint32_t* target_pixel = &target.pixels[y * target.width + min_x_i - 1]; for (int x = min_x_i; x < max_x_i; ++x) { ++target_pixel; if (*target_pixel == last_target_pixel) { *target_pixel = last_output; continue; } last_target_pixel = *target_pixel; const ColorInt* colorRef = (const ColorInt*)(target_pixel); *target_pixel = blend(*colorRef, color); last_output = *target_pixel; } } } } static void paint_uniform_textured_rectangle(const PaintTarget &target, const SWTexture &texture, const ImVec4 &clip_rect, const ImDrawVert &min_v, const ImDrawVert &max_v) { const ImVec2 min_p = ImVec2(min_v.pos.x, min_v.pos.y); const ImVec2 max_p = ImVec2(max_v.pos.x, max_v.pos.y); float distanceX = max_p.x - min_p.x; float distanceY = max_p.y - min_p.y; if (distanceX == 0 || distanceY == 0) { return; } // Find bounding box: float min_x_f = min_p.x; float min_y_f = min_p.y; float max_x_f = max_p.x; float max_y_f = max_p.y; // Clip against clip_rect: min_x_f = std::max(min_x_f, clip_rect.x); min_y_f = std::max(min_y_f, clip_rect.y); max_x_f = std::min(max_x_f, clip_rect.z - 0.5f); max_y_f = std::min(max_y_f, clip_rect.w - 0.5f); // Integer bounding box [min, max): int min_x_i = (int)(min_x_f); int min_y_i = (int)(min_y_f); int max_x_i = (int)(max_x_f + 1.0f); int max_y_i = (int)(max_y_f + 1.0f); // Clip against render target: min_x_i = std::max(min_x_i, 0); min_y_i = std::max(min_y_i, 0); max_x_i = std::min(max_x_i, target.width); max_y_i = std::min(max_y_i, target.height); const auto topleft = ImVec2(min_x_i + 0.5f, min_y_i + 0.5f); const ImVec2 delta_uv_per_pixel = { (max_v.uv.x - min_v.uv.x) / distanceX, (max_v.uv.y - min_v.uv.y) / distanceY, }; const ImVec2 uv_topleft = { min_v.uv.x + (topleft.x - min_v.pos.x) * delta_uv_per_pixel.x, min_v.uv.y + (topleft.y - min_v.pos.y) * delta_uv_per_pixel.y, }; int startX = uv_topleft.x * (texture.width - 1.0f) + 0.5f; int startY = uv_topleft.y * (texture.height - 1.0f) + 0.5f; int currentX = startX; int currentY = startY * texture.width; float deltaX = delta_uv_per_pixel.x * texture.width; float deltaY = delta_uv_per_pixel.y * texture.height; const ColorInt colorRef = ColorInt::bgra(min_v.col); for (int y = min_y_i; y < max_y_i; ++y) { currentX = startX; uint32_t* target_pixel = &target.pixels[y * target.width - 1 + min_x_i]; for (int x = min_x_i; x < max_x_i; ++x) { ++target_pixel; const ColorInt* targetColorRef = (const ColorInt*)(target_pixel); if (texture.isAlpha) { uint8_t texel = sample_font_texture(texture, currentX, currentY); if (deltaX != 0 && currentX < texture.width - 1) { currentX += 1; } // The font texture is all black or all white, so optimize for this: // anti-aliasing will be lost, but it doesn't matter if (texel & 0x80) { *target_pixel = blend(*targetColorRef, colorRef); } continue; } else { uint32_t texColor = sample_texture(texture, currentX, currentY); auto src_color = ColorInt(texColor); if (deltaX != 0 && currentX < texture.width - 1) { currentX += 1; } src_color *= colorRef; *target_pixel = blend(*targetColorRef, src_color); } } if (deltaY != 0 && currentY < (texture.height - 1)*texture.width) { currentY += texture.width; } } } // When two triangles share an edge, we want to draw the pixels on that edge exactly once. // The edge will be the same, but the direction will be the opposite // (assuming the two triangles have the same winding order). // Which edge wins? This functions decides. static bool is_dominant_edge(ImVec2 edge) { // return edge.x < 0 || (edge.x == 0 && edge.y > 0); return edge.y > 0 || (edge.y == 0 && edge.x < 0); } // Handles triangles in any winding order (CW/CCW) static void paint_triangle(const PaintTarget &target, const SWTexture *texture, const ImVec4 &clip_rect, const ImDrawVert &v0, const ImDrawVert &v1, const ImDrawVert &v2) { const ImVec2 p0 = ImVec2(v0.pos.x, v0.pos.y); const ImVec2 p1 = ImVec2(v1.pos.x, v1.pos.y); const ImVec2 p2 = ImVec2(v2.pos.x, v2.pos.y); const auto rect_area = barycentric(p0, p1, p2);// Can be positive or negative depending on winding order if (rect_area == 0.0f) { return; } // if (rect_area < 0.0f) { return paint_triangle(target, texture, clip_rect, v0, v2, v1); } // Find bounding box: float min_x_f = min3(p0.x, p1.x, p2.x); float min_y_f = min3(p0.y, p1.y, p2.y); float max_x_f = max3(p0.x, p1.x, p2.x); float max_y_f = max3(p0.y, p1.y, p2.y); // Clip against clip_rect: min_x_f = std::max(min_x_f, clip_rect.x); min_y_f = std::max(min_y_f, clip_rect.y); max_x_f = std::min(max_x_f, clip_rect.z - 0.5f); max_y_f = std::min(max_y_f, clip_rect.w - 0.5f); // Integer bounding box [min, max): int min_x_i = (int)(min_x_f); int min_y_i = (int)(min_y_f); int max_x_i = (int)(max_x_f + 1.0f); int max_y_i = (int)(max_y_f + 1.0f); // Clip against render target: min_x_i = std::max(min_x_i, 0); min_y_i = std::max(min_y_i, 0); max_x_i = std::min(max_x_i, target.width); max_y_i = std::min(max_y_i, target.height); // ------------------------------------------------------------------------ // Set up interpolation of barycentric coordinates: const auto topleft = ImVec2(min_x_i + 0.5f, min_y_i + 0.5f); const auto dx = ImVec2(1, 0); const auto dy = ImVec2(0, 1); const auto w0_topleft = barycentric(p1, p2, topleft); const auto w1_topleft = barycentric(p2, p0, topleft); const auto w2_topleft = barycentric(p0, p1, topleft); const auto w0_dx = barycentric(p1, p2, topleft + dx) - w0_topleft; const auto w1_dx = barycentric(p2, p0, topleft + dx) - w1_topleft; const auto w2_dx = barycentric(p0, p1, topleft + dx) - w2_topleft; const auto w0_dy = barycentric(p1, p2, topleft + dy) - w0_topleft; const auto w1_dy = barycentric(p2, p0, topleft + dy) - w1_topleft; const auto w2_dy = barycentric(p0, p1, topleft + dy) - w2_topleft; const Barycentric bary_0{ 1, 0, 0 }; const Barycentric bary_1{ 0, 1, 0 }; const Barycentric bary_2{ 0, 0, 1 }; const auto inv_area = 1 / rect_area; const Barycentric bary_topleft = inv_area * (w0_topleft * bary_0 + w1_topleft * bary_1 + w2_topleft * bary_2); const Barycentric bary_dx = inv_area * (w0_dx * bary_0 + w1_dx * bary_1 + w2_dx * bary_2); const Barycentric bary_dy = inv_area * (w0_dy * bary_0 + w1_dy * bary_1 + w2_dy * bary_2); Barycentric bary_current_row = bary_topleft; // ------------------------------------------------------------------------ // For pixel-perfect inside/outside testing: const int sign = rect_area > 0 ? 1 : -1;// winding order? const int bias0i = is_dominant_edge(p2 - p1) ? 0 : -1; const int bias1i = is_dominant_edge(p0 - p2) ? 0 : -1; const int bias2i = is_dominant_edge(p1 - p0) ? 0 : -1; const auto p0i = as_point(p0); const auto p1i = as_point(p1); const auto p2i = as_point(p2); // ------------------------------------------------------------------------ const bool has_uniform_color = (v0.col == v1.col && v0.col == v2.col); const ImVec4 c0 = color_convert_u32_to_float4(v0.col); const ImVec4 c1 = color_convert_u32_to_float4(v1.col); const ImVec4 c2 = color_convert_u32_to_float4(v2.col); // We often blend the same colors over and over again, so optimize for this (saves 10% total cpu): uint32_t last_target_pixel = 0; const ColorInt* lastColorRef = (const ColorInt*)(&last_target_pixel); const ColorInt colorRef = ColorInt::bgra(v0.col); uint32_t last_output = blend(*lastColorRef, colorRef); for (int y = min_y_i; y < max_y_i; ++y) { auto bary = bary_current_row; bool has_been_inside_this_row = false; for (int x = min_x_i; x < max_x_i; ++x) { const auto w0 = bary.w0; const auto w1 = bary.w1; const auto w2 = bary.w2; bary += bary_dx; { // Inside/outside test: const auto p = Point{ kFixedBias * x + kFixedBias / 2, kFixedBias * y + kFixedBias / 2 }; const auto w0i = sign * orient2d(p1i, p2i, p) + bias0i; const auto w1i = sign * orient2d(p2i, p0i, p) + bias1i; const auto w2i = sign * orient2d(p0i, p1i, p) + bias2i; if (w0i < 0 || w1i < 0 || w2i < 0) { if (has_been_inside_this_row) { break;// Gives a nice 10% speedup } else { continue; } } } has_been_inside_this_row = true; uint32_t &target_pixel = target.pixels[y * target.width + x]; if (has_uniform_color && !texture) { if (target_pixel == last_target_pixel) { target_pixel = last_output; continue; } last_target_pixel = target_pixel; target_pixel = blend(*lastColorRef, colorRef); last_output = target_pixel; continue; } ImVec4 src_color; if (has_uniform_color) { src_color = c0; } else { src_color = w0 * c0 + w1 * c1 + w2 * c2; } if (texture) { if (!texture->isAlpha) { printf("warning: different texture\n"); } const ImVec2 uv = w0 * v0.uv + w1 * v1.uv + w2 * v2.uv; int x = uv.x * (texture->width - 1.0f) + 0.5f; int y = uv.y * (texture->height - 1.0f) + 0.5f; src_color.w *= sample_font_texture(*texture, x, y) / 255.0f; } if (src_color.w <= 0.0f) { continue; }// Transparent. if (src_color.w >= 1.0f) { // Opaque, no blending needed: target_pixel = color_convert_float4_to_u32(src_color); continue; } ImVec4 target_color = color_convert_u32_to_float4(target_pixel); const auto blended_color = src_color.w * src_color + (1.0f - src_color.w) * target_color; target_pixel = color_convert_float4_to_u32(blended_color); } bary_current_row += bary_dy; } } static void paint_draw_cmd(const PaintTarget &target, const ImDrawVert *vertices, const ImDrawIdx *idx_buffer, const ImDrawCmd &pcmd, const SwOptions &options, const ImVec2& white_uv) { const SWTexture* texture = (const SWTexture*)(pcmd.TextureId); IM_ASSERT(texture); for (unsigned int i = 0; i + 3 <= pcmd.ElemCount;) { ImDrawVert v0 = vertices[idx_buffer[i + 0]]; ImDrawVert v1 = vertices[idx_buffer[i + 1]]; ImDrawVert v2 = vertices[idx_buffer[i + 2]]; // Text is common, and is made of textured rectangles. So let's optimize for it. // This assumes the ImGui way to layout text does not change. if (options.optimize_text && i + 6 <= pcmd.ElemCount && idx_buffer[i + 3] == idx_buffer[i + 0] && idx_buffer[i + 4] == idx_buffer[i + 2]) { ImDrawVert v3 = vertices[idx_buffer[i + 5]]; if (v0.pos.x == v3.pos.x && v1.pos.x == v2.pos.x && v0.pos.y == v1.pos.y && v2.pos.y == v3.pos.y && v0.uv.x == v3.uv.x && v1.uv.x == v2.uv.x && v0.uv.y == v1.uv.y && v2.uv.y == v3.uv.y) { const bool has_uniform_color = v0.col == v1.col && v0.col == v2.col && v0.col == v3.col; const bool has_texture = v0.uv != white_uv || v1.uv != white_uv || v2.uv != white_uv || v3.uv != white_uv; if (has_uniform_color && has_texture) { paint_uniform_textured_rectangle(target, *texture, pcmd.ClipRect, v0, v2); i += 6; continue; } } } // A lot of the big stuff are uniformly colored rectangles, // so we can save a lot of CPU by detecting them: if (options.optimize_rectangles && i + 6 <= pcmd.ElemCount) { ImDrawVert v3 = vertices[idx_buffer[i + 3]]; ImDrawVert v4 = vertices[idx_buffer[i + 4]]; ImDrawVert v5 = vertices[idx_buffer[i + 5]]; ImVec2 min, max; min.x = min3(v0.pos.x, v1.pos.x, v2.pos.x); min.y = min3(v0.pos.y, v1.pos.y, v2.pos.y); max.x = max3(v0.pos.x, v1.pos.x, v2.pos.x); max.y = max3(v0.pos.y, v1.pos.y, v2.pos.y); // Not the prettiest way to do this, but it catches all cases // of a rectangle split into two triangles. // TODO: Stop it from also assuming duplicate triangles is one rectangle. if ((v0.pos.x == min.x || v0.pos.x == max.x) && (v0.pos.y == min.y || v0.pos.y == max.y) && (v1.pos.x == min.x || v1.pos.x == max.x) && (v1.pos.y == min.y || v1.pos.y == max.y) && (v2.pos.x == min.x || v2.pos.x == max.x) && (v2.pos.y == min.y || v2.pos.y == max.y) && (v3.pos.x == min.x || v3.pos.x == max.x) && (v3.pos.y == min.y || v3.pos.y == max.y) && (v4.pos.x == min.x || v4.pos.x == max.x) && (v4.pos.y == min.y || v4.pos.y == max.y) && (v5.pos.x == min.x || v5.pos.x == max.x) && (v5.pos.y == min.y || v5.pos.y == max.y)) { const bool has_uniform_color = v0.col == v1.col && v0.col == v2.col && v0.col == v3.col && v0.col == v4.col && v0.col == v5.col; min.x = std::max(min.x, pcmd.ClipRect.x); min.y = std::max(min.y, pcmd.ClipRect.y); max.x = std::min(max.x, pcmd.ClipRect.z - 0.5f); max.y = std::min(max.y, pcmd.ClipRect.w - 0.5f); if (max.x < min.x || max.y < min.y) { i += 6; continue; }// Completely clipped if (has_uniform_color) { const ColorInt colorRef = ColorInt::bgra(v0.col); paint_uniform_rectangle(target, min, max, colorRef); i += 6; continue; } } } const bool has_texture = (v0.uv != white_uv || v1.uv != white_uv || v2.uv != white_uv); paint_triangle(target, has_texture ? texture : nullptr, pcmd.ClipRect, v0, v1, v2); i += 3; } } static void paint_draw_list(const PaintTarget &target, const ImDrawList *cmd_list, const SwOptions &options) { const ImDrawIdx *idx_buffer = &cmd_list->IdxBuffer[0]; const ImDrawVert *vertices = cmd_list->VtxBuffer.Data; const ImVec2 white_uv = cmd_list->_Data->TexUvWhitePixel; for (int cmd_i = 0; cmd_i < cmd_list->CmdBuffer.size(); cmd_i++) { const ImDrawCmd &pcmd = cmd_list->CmdBuffer[cmd_i]; if (pcmd.UserCallback) { pcmd.UserCallback(cmd_list, &pcmd); } else { paint_draw_cmd(target, vertices, idx_buffer, pcmd, options, white_uv); } idx_buffer += pcmd.ElemCount; } } static void paint_imgui(uint32_t *pixels, ImDrawData *drawData, int fb_width, int fb_height, const SwOptions &options = {}) { if (fb_width <= 0 || fb_height <= 0) return; PaintTarget target{ pixels, fb_width, fb_height }; for (int i = 0; i < drawData->CmdListsCount; ++i) { paint_draw_list(target, drawData->CmdLists[i], options); } } /// NEW STUFF bool ImGui_ImplSW_Init(SDL_Window* win) { ImGuiIO& io = ImGui::GetIO(); IM_ASSERT(io.BackendRendererUserData == nullptr); if (SDL_HasWindowSurface(win)==SDL_FALSE) { return false; } ImGui_ImplSW_Data* bd = IM_NEW(ImGui_ImplSW_Data)(); bd->Window = win; io.BackendRendererUserData = (void*)bd; io.BackendRendererName = "imgui_sw"; return true; } void ImGui_ImplSW_Shutdown() { ImGui_ImplSW_Data* bd = ImGui_ImplSW_GetBackendData(); IM_ASSERT(bd != nullptr); ImGuiIO& io = ImGui::GetIO(); ImGui_ImplSW_DestroyDeviceObjects(); io.BackendRendererName = nullptr; io.BackendRendererUserData = nullptr; IM_DELETE(bd); } bool ImGui_ImplSW_NewFrame() { ImGui_ImplSW_Data* bd = ImGui_ImplSW_GetBackendData(); IM_ASSERT(bd != nullptr); if (!bd->FontTexture) ImGui_ImplSW_CreateDeviceObjects(); return true; } void ImGui_ImplSW_RenderDrawData(ImDrawData* draw_data) { ImGui_ImplSW_Data* bd = ImGui_ImplSW_GetBackendData(); IM_ASSERT(bd != nullptr); SDL_Surface* surf = SDL_GetWindowSurface(bd->Window); if (!surf) return; bool mustLock=SDL_MUSTLOCK(surf); if (mustLock) { if (SDL_LockSurface(surf)!=0) return; } paint_imgui((uint32_t*)surf->pixels,draw_data,surf->w,surf->h); // 0xAARRGGBB if (mustLock) { SDL_UnlockSurface(surf); } } /// CREATE OBJECTS bool ImGui_ImplSW_CreateFontsTexture() { ImGuiIO &io = ImGui::GetIO(); ImGui_ImplSW_Data* bd = ImGui_ImplSW_GetBackendData(); // Load default font (embedded in code): uint8_t *tex_data; int font_width, font_height; io.Fonts->GetTexDataAsAlpha8(&tex_data, &font_width, &font_height); SWTexture* texture = new SWTexture((uint32_t*)tex_data,font_width,font_height,true); io.Fonts->SetTexID(texture); bd->FontTexture = texture; return true; } void ImGui_ImplSW_DestroyFontsTexture() { ImGuiIO& io = ImGui::GetIO(); ImGui_ImplSW_Data* bd = ImGui_ImplSW_GetBackendData(); if (bd->FontTexture) { delete bd->FontTexture; io.Fonts->SetTexID(0); bd->FontTexture = 0; } } bool ImGui_ImplSW_CreateDeviceObjects() { return ImGui_ImplSW_CreateFontsTexture(); } void ImGui_ImplSW_DestroyDeviceObjects() { ImGui_ImplSW_DestroyFontsTexture(); } #endif // #ifndef IMGUI_DISABLE