/** * Furnace Tracker - multi-system chiptune tracker * Copyright (C) 2021-2022 tildearrow and contributors * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "n163.h" #include "../engine.h" #include #define rRead(a,v) n163.addr_w(a); n163.data_r(v); #define rWrite(a,v) if (!skipRegisterWrites) {writes.emplace(a,v); if (dumpWrites) {addWrite(a,v);} } #define rWriteMask(a,v,m) if (!skipRegisterWrites) {writes.emplace(a,v,m); if (dumpWrites) {addWrite(a,v);} } #define chWrite(c,a,v) \ if (c<=chanMax) { \ rWrite(0x78-(c<<3)+(a&7),v) \ } #define chWriteMask(c,a,v,m) \ if (c<=chanMax) { \ rWriteMask(0x78-(c<<3)+(a&7),v,m) \ } #define CHIP_FREQBASE (15*32768) const char* regCheatSheetN163[]={ "FreqL7", "40", "AccL7", "41", "FreqM7", "42", "AccM7", "43", "WavLen_FreqH7", "44", "AccH7", "45", "WavPos7", "46", "Vol7", "47", "FreqL6", "48", "AccL6", "49", "FreqM6", "4A", "AccM6", "4B", "WavLen_FreqH6", "4C", "AccH6", "4D", "WavPos6", "4E", "Vol6", "4F", "FreqL5", "50", "AccL5", "51", "FreqM5", "52", "AccM5", "53", "WavLen_FreqH5", "54", "AccH5", "55", "WavPos5", "56", "Vol5", "57", "FreqL4", "58", "AccL4", "59", "FreqM4", "5A", "AccM4", "5B", "WavLen_FreqH4", "5C", "AccH4", "5D", "WavPos4", "5E", "Vol4", "5F", "FreqL3", "60", "AccL3", "61", "FreqM3", "62", "AccM3", "63", "WavLen_FreqH3", "64", "AccH3", "65", "WavPos3", "66", "Vol3", "67", "FreqL2", "68", "AccL2", "69", "FreqM2", "6A", "AccM2", "6B", "WavLen_FreqH2", "6C", "AccH2", "6D", "WavPos2", "6E", "Vol2", "6F", "FreqL1", "70", "AccL1", "71", "FreqM1", "72", "AccM1", "73", "WavLen_FreqH1", "74", "AccH1", "75", "WavPos1", "76", "Vol1", "77", "FreqL0", "78", "AccL0", "79", "FreqM0", "7A", "AccM0", "7B", "WavLen_FreqH0", "7C", "AccH0", "7D", "WavPos0", "7E", "ChanMax_Vol0", "7F", NULL }; const char** DivPlatformN163::getRegisterSheet() { return regCheatSheetN163; } void DivPlatformN163::acquire(short* bufL, short* bufR, size_t start, size_t len) { for (size_t i=start; i32767) out=32767; if (out<-32768) out=-32768; bufL[i]=bufR[i]=out; if (n163.voice_cycle()==0x78) for (int i=0; i<8; i++) { oscBuf[i]->data[oscBuf[i]->needle++]=n163.voice_out(i)<<7; } // command queue while (!writes.empty()) { QueuedWrite w=writes.front(); n163.addr_w(w.addr); n163.data_w((n163.data_r()&~w.mask)|(w.val&w.mask)); writes.pop(); } } } void DivPlatformN163::updateWave(int ch, int wave, int pos, int len) { len&=0xfc; // 4 nibble boundary if (wave<0) { // load from wave synth for (int i=0; i=((0x78-(chanMax<<3))<<1)) { // avoid conflict with channel register area break; } unsigned char mask=(addr&1)?0xf0:0x0f; int data=chan[ch].ws.output[i]; rWriteMask(addr>>1,(addr&1)?(data<<4):(data&0xf),mask); } } else { // load from custom DivWavetable* wt=parent->getWave(wave); for (int i=0; i=((0x78-(chanMax<<3))<<1)) { // avoid conflict with channel register area break; } unsigned char mask=(addr&1)?0xf0:0x0f; if (wt->max<1 || wt->len<1) { rWriteMask(addr>>1,0,mask); } else { int data=wt->data[i*wt->len/len]*15/wt->max; if (data<0) data=0; if (data>15) data=15; rWriteMask(addr>>1,(addr&1)?(data<<4):(data&0xf),mask); } } } } void DivPlatformN163::updateWaveCh(int ch) { if (ch<=chanMax) { updateWave(ch,-1,chan[ch].wavePos,chan[ch].waveLen); if (chan[ch].active && !isMuted[ch]) { chan[ch].volumeChanged=true; } } } void DivPlatformN163::tick(bool sysTick) { for (int i=0; i<=chanMax; i++) { chan[i].std.next(); if (chan[i].std.vol.had) { chan[i].outVol=(MIN(15,chan[i].std.vol.val)*(chan[i].vol&15))/15; if (chan[i].outVol<0) chan[i].outVol=0; if (chan[i].outVol>15) chan[i].outVol=15; if (chan[i].resVol!=chan[i].outVol) { chan[i].resVol=chan[i].outVol; if (!isMuted[i]) { chan[i].volumeChanged=true; } } } if (chan[i].std.arp.had) { if (!chan[i].inPorta) { chan[i].baseFreq=NOTE_FREQUENCY(parent->calcArp(chan[i].note,chan[i].std.arp.val)); } chan[i].freqChanged=true; } if (chan[i].std.duty.had) { if (chan[i].wavePos!=chan[i].std.duty.val) { chan[i].wavePos=chan[i].std.duty.val; if (chan[i].waveMode&0x2) { chan[i].waveUpdated=true; } chan[i].waveChanged=true; } } if (chan[i].std.wave.had) { if (chan[i].wave!=chan[i].std.wave.val) { chan[i].wave=chan[i].std.wave.val; chan[i].ws.changeWave1(chan[i].wave); if (chan[i].waveMode&0x2) { chan[i].waveUpdated=true; } } } if (chan[i].std.pitch.had) { if (chan[i].std.pitch.mode) { chan[i].pitch2+=chan[i].std.pitch.val; CLAMP_VAR(chan[i].pitch2,-32768,32767); } else { chan[i].pitch2=chan[i].std.pitch.val; } chan[i].freqChanged=true; } if (chan[i].std.ex1.had) { if (chan[i].waveLen!=(chan[i].std.ex1.val&0xfc)) { chan[i].waveLen=chan[i].std.ex1.val&0xfc; chan[i].ws.setWidth(chan[i].waveLen); if (chan[i].waveMode&0x2) { chan[i].waveUpdated=true; } chan[i].freqChanged=true; } } if (chan[i].std.ex2.had) { if ((chan[i].waveMode&0x2)!=(chan[i].std.ex2.val&0x2)) { // update when every waveform changed chan[i].waveMode=(chan[i].waveMode&~0x2)|(chan[i].std.ex2.val&0x2); if (chan[i].waveMode&0x2) { chan[i].waveUpdated=true; chan[i].waveChanged=true; } } if ((chan[i].waveMode&0x1)!=(chan[i].std.ex2.val&0x1)) { // update waveform now chan[i].waveMode=(chan[i].waveMode&~0x1)|(chan[i].std.ex2.val&0x1); if (chan[i].waveMode&0x1) { // rising edge chan[i].waveUpdated=true; chan[i].waveChanged=true; } } } if (chan[i].std.ex3.had) { if (chan[i].loadWave!=chan[i].std.ex3.val) { chan[i].loadWave=chan[i].std.ex3.val; if (chan[i].loadMode&0x2) { updateWave(i,chan[i].loadWave,chan[i].loadPos,chan[i].loadLen&0xfc); } } } if (chan[i].std.alg.had) { if (chan[i].loadPos!=chan[i].std.alg.val) { chan[i].loadPos=chan[i].std.alg.val; } } if (chan[i].std.fb.had) { if (chan[i].loadLen!=(chan[i].std.fb.val&0xfc)) { chan[i].loadLen=chan[i].std.fb.val&0xfc; } } if (chan[i].std.fms.had) { if ((chan[i].loadMode&0x2)!=(chan[i].std.fms.val&0x2)) { // load when every waveform changes chan[i].loadMode=(chan[i].loadMode&~0x2)|(chan[i].std.fms.val&0x2); } if ((chan[i].loadMode&0x1)!=(chan[i].std.fms.val&0x1)) { // load now chan[i].loadMode=(chan[i].loadMode&~0x1)|(chan[i].std.fms.val&0x1); if (chan[i].loadMode&0x1) { // rising edge updateWave(i,chan[i].loadWave,chan[i].loadPos,chan[i].loadLen&0xfc); } } } if (chan[i].volumeChanged) { if (chan[i].active && !isMuted[i]) { chWriteMask(i,0x7,chan[i].resVol&0xf,0xf); } else { chWriteMask(i,0x7,0,0xf); } chan[i].volumeChanged=false; } if (chan[i].waveChanged) { chWrite(i,0x6,chan[i].wavePos); if (chan[i].active) { chan[i].freqChanged=true; } chan[i].waveChanged=false; } if (chan[i].active) { if (chan[i].ws.tick()) { chan[i].waveUpdated=true; } } if (chan[i].waveUpdated) { updateWaveCh(i); if (chan[i].active) { if (!chan[i].keyOff) chan[i].keyOn=true; } chan[i].waveUpdated=false; } if (chan[i].freqChanged || chan[i].keyOn || chan[i].keyOff) { // TODO: what is this mess? chan[i].freq=parent->calcFreq(chan[i].baseFreq,chan[i].pitch,false,2,chan[i].pitch2,chipClock,CHIP_FREQBASE); chan[i].freq=(((chan[i].freq*chan[i].waveLen)*(chanMax+1))/16); if (chan[i].freq<0) chan[i].freq=0; if (chan[i].freq>0x3ffff) chan[i].freq=0x3ffff; if (chan[i].keyOn) { if (chan[i].wave<0) { chan[i].wave=0; if (chan[i].waveMode&0x2) { updateWaveCh(i); } } } if (chan[i].keyOff && !isMuted[i]) { chWriteMask(i,0x7,0,0xf); } chWrite(i,0x0,chan[i].freq&0xff); chWrite(i,0x2,chan[i].freq>>8); chWrite(i,0x4,((256-chan[i].waveLen)&0xfc)|((chan[i].freq>>16)&3)); if (chan[i].keyOn) chan[i].keyOn=false; if (chan[i].keyOff) chan[i].keyOff=false; chan[i].freqChanged=false; } } } int DivPlatformN163::dispatch(DivCommand c) { switch (c.cmd) { case DIV_CMD_NOTE_ON: { DivInstrument* ins=parent->getIns(chan[c.chan].ins,DIV_INS_N163); if (chan[c.chan].insChanged) { chan[c.chan].wave=ins->n163.wave; chan[c.chan].ws.changeWave1(chan[c.chan].wave); chan[c.chan].wavePos=ins->n163.wavePos; chan[c.chan].waveLen=ins->n163.waveLen; chan[c.chan].waveMode=ins->n163.waveMode; chan[c.chan].waveChanged=true; if (chan[c.chan].waveMode&0x3 || ins->ws.enabled) { chan[c.chan].waveUpdated=true; } chan[c.chan].insChanged=false; } if (c.value!=DIV_NOTE_NULL) { chan[c.chan].baseFreq=NOTE_FREQUENCY(c.value); chan[c.chan].freqChanged=true; chan[c.chan].note=c.value; } chan[c.chan].active=true; chan[c.chan].keyOn=true; chan[c.chan].resVol=chan[c.chan].vol; if (!isMuted[c.chan]) { chan[c.chan].volumeChanged=true; } chan[c.chan].macroInit(ins); chan[c.chan].ws.init(ins,chan[c.chan].waveLen,15,chan[c.chan].insChanged); break; } case DIV_CMD_NOTE_OFF: chan[c.chan].active=false; chan[c.chan].keyOff=true; chan[c.chan].keyOn=false; //chan[c.chan].macroInit(NULL); break; case DIV_CMD_NOTE_OFF_ENV: chan[c.chan].active=false; chan[c.chan].keyOff=true; chan[c.chan].keyOn=false; chan[c.chan].std.release(); break; case DIV_CMD_ENV_RELEASE: chan[c.chan].std.release(); break; case DIV_CMD_INSTRUMENT: if (chan[c.chan].ins!=c.value || c.value2==1) { chan[c.chan].insChanged=true; chan[c.chan].ins=c.value; } break; case DIV_CMD_VOLUME: if (chan[c.chan].vol!=c.value) { chan[c.chan].vol=c.value; if (!chan[c.chan].std.vol.has) { chan[c.chan].outVol=c.value; chan[c.chan].resVol=chan[c.chan].outVol; } else { chan[c.chan].resVol=chan[c.chan].vol; } if (!isMuted[c.chan]) { chan[c.chan].volumeChanged=true; } } break; case DIV_CMD_GET_VOLUME: return chan[c.chan].vol; break; case DIV_CMD_PITCH: chan[c.chan].pitch=c.value; chan[c.chan].freqChanged=true; break; case DIV_CMD_NOTE_PORTA: { int destFreq=NOTE_FREQUENCY(c.value2); bool return2=false; if (destFreq>chan[c.chan].baseFreq) { chan[c.chan].baseFreq+=c.value; if (chan[c.chan].baseFreq>=destFreq) { chan[c.chan].baseFreq=destFreq; return2=true; } } else { chan[c.chan].baseFreq-=c.value; if (chan[c.chan].baseFreq<=destFreq) { chan[c.chan].baseFreq=destFreq; return2=true; } } chan[c.chan].freqChanged=true; if (return2) { chan[c.chan].inPorta=false; return 2; } break; } case DIV_CMD_WAVE: chan[c.chan].wave=c.value; if (chan[c.chan].waveMode&0x2) { chan[c.chan].waveUpdated=true; } chan[c.chan].keyOn=true; break; case DIV_CMD_N163_WAVE_POSITION: chan[c.chan].wavePos=c.value; if (chan[c.chan].waveMode&0x2) { chan[c.chan].waveUpdated=true; } chan[c.chan].waveChanged=true; break; case DIV_CMD_N163_WAVE_LENGTH: chan[c.chan].waveLen=c.value&0xfc; if (chan[c.chan].waveMode&0x2) { chan[c.chan].waveUpdated=true; } chan[c.chan].freqChanged=true; break; case DIV_CMD_N163_WAVE_MODE: chan[c.chan].waveMode=c.value&0x3; if (chan[c.chan].waveMode&0x3) { // update now chan[c.chan].waveUpdated=true; chan[c.chan].waveChanged=true; } break; case DIV_CMD_N163_WAVE_LOAD: chan[c.chan].loadWave=c.value; if (chan[c.chan].loadMode&0x2) { // load when every waveform changes updateWave(c.chan,chan[c.chan].loadWave,chan[c.chan].loadPos,chan[c.chan].loadLen); } break; case DIV_CMD_N163_WAVE_LOADPOS: chan[c.chan].loadPos=c.value; break; case DIV_CMD_N163_WAVE_LOADLEN: chan[c.chan].loadLen=c.value&0xfc; break; case DIV_CMD_N163_WAVE_LOADMODE: chan[c.chan].loadMode=c.value&0x3; if (chan[c.chan].loadMode&0x1) { // load now updateWave(c.chan,chan[c.chan].loadWave,chan[c.chan].loadPos,chan[c.chan].loadLen); } break; case DIV_CMD_N163_GLOBAL_WAVE_LOAD: loadWave=c.value; if (loadMode&0x2) { // load when every waveform changes updateWave(c.chan,loadWave,loadPos,loadLen); } break; case DIV_CMD_N163_GLOBAL_WAVE_LOADPOS: loadPos=c.value; break; case DIV_CMD_N163_GLOBAL_WAVE_LOADLEN: loadLen=c.value&0xfc; break; case DIV_CMD_N163_GLOBAL_WAVE_LOADMODE: loadMode=c.value&0x3; if (loadMode&0x3) { // load now updateWave(c.chan,loadWave,loadPos,loadLen); } break; case DIV_CMD_N163_CHANNEL_LIMIT: if (chanMax!=(c.value&0x7)) { chanMax=c.value&0x7; rWriteMask(0x7f,chanMax<<4,0x70); forceIns(); } break; case DIV_CMD_LEGATO: chan[c.chan].baseFreq=NOTE_FREQUENCY(c.value+((chan[c.chan].std.arp.will && !chan[c.chan].std.arp.mode)?(chan[c.chan].std.arp.val):(0))); chan[c.chan].freqChanged=true; chan[c.chan].note=c.value; break; case DIV_CMD_PRE_PORTA: if (chan[c.chan].active && c.value2) { if (parent->song.resetMacroOnPorta) { chan[c.chan].macroInit(parent->getIns(chan[c.chan].ins,DIV_INS_N163)); chan[c.chan].keyOn=true; } } if (!chan[c.chan].inPorta && c.value && !parent->song.brokenPortaArp && chan[c.chan].std.arp.will) chan[c.chan].baseFreq=NOTE_FREQUENCY(chan[c.chan].note); chan[c.chan].inPorta=c.value; break; case DIV_CMD_GET_VOLMAX: return 15; break; case DIV_ALWAYS_SET_VOLUME: return 1; break; default: break; } return 1; } void DivPlatformN163::muteChannel(int ch, bool mute) { isMuted[ch]=mute; chan[ch].volumeChanged=true; } void DivPlatformN163::forceIns() { for (int i=0; i<=chanMax; i++) { chan[i].insChanged=true; if (chan[i].active) { chan[i].keyOn=true; chan[i].freqChanged=true; chan[i].volumeChanged=true; chan[i].waveChanged=true; if (chan[i].waveMode&0x2) { chan[i].waveUpdated=true; } } } } void DivPlatformN163::notifyWaveChange(int wave) { for (int i=0; i<8; i++) { if (chan[i].wave==wave) { if (chan[i].waveMode&0x2) { chan[i].ws.changeWave1(wave); chan[i].waveUpdated=true; } } } } void DivPlatformN163::notifyInsChange(int ins) { for (int i=0; i<8; i++) { if (chan[i].ins==ins) { chan[i].insChanged=true; } } } void DivPlatformN163::notifyInsDeletion(void* ins) { for (int i=0; i<8; i++) { chan[i].std.notifyInsDeletion((DivInstrument*)ins); } } void* DivPlatformN163::getChanState(int ch) { return &chan[ch]; } DivMacroInt* DivPlatformN163::getChanMacroInt(int ch) { return &chan[ch].std; } DivDispatchOscBuffer* DivPlatformN163::getOscBuffer(int ch) { return oscBuf[ch]; } unsigned char* DivPlatformN163::getRegisterPool() { for (int i=0; i<128; i++) { regPool[i]=n163.reg(i); } return regPool; } int DivPlatformN163::getRegisterPoolSize() { return 128; } void DivPlatformN163::reset() { while (!writes.empty()) writes.pop(); for (int i=0; i<8; i++) { chan[i]=DivPlatformN163::Channel(); chan[i].std.setEngine(parent); chan[i].ws.setEngine(parent); chan[i].ws.init(NULL,32,15,false); } n163.reset(); memset(regPool,0,128); n163.set_disable(false); n163.set_multiplex(multiplex); chanMax=initChanMax; loadWave=-1; loadPos=0; loadLen=0; loadMode=0; rWrite(0x7f,initChanMax<<4); } void DivPlatformN163::poke(unsigned int addr, unsigned short val) { rWrite(addr,val); } void DivPlatformN163::poke(std::vector& wlist) { for (DivRegWrite& i: wlist) rWrite(i.addr,i.val); } void DivPlatformN163::setFlags(const DivConfig& flags) { switch (flags.getInt("clockSel",0)) { case 1: // PAL chipClock=COLOR_PAL*3.0/8.0; break; case 2: // Dendy chipClock=COLOR_PAL*2.0/5.0; break; default: // NTSC chipClock=COLOR_NTSC/2.0; break; } CHECK_CUSTOM_CLOCK; initChanMax=chanMax=flags.getInt("channels",0)&7; multiplex=!flags.getBool("multiplex",false); // not accurate in real hardware rate=chipClock; rate/=15; n163.set_multiplex(multiplex); rWrite(0x7f,initChanMax<<4); for (int i=0; i<8; i++) { oscBuf[i]->rate=rate/(initChanMax+1); } // needed to make sure changing channel count won't trigger glitches reset(); } int DivPlatformN163::init(DivEngine* p, int channels, int sugRate, const DivConfig& flags) { parent=p; dumpWrites=false; skipRegisterWrites=false; for (int i=0; i<8; i++) { isMuted[i]=false; oscBuf[i]=new DivDispatchOscBuffer; } setFlags(flags); reset(); return 8; } void DivPlatformN163::quit() { for (int i=0; i<8; i++) { delete oscBuf[i]; } } DivPlatformN163::~DivPlatformN163() { }