/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Tue Sep 14 10:47:12 EDT 2021 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hc2cbdft_6 -include rdft/scalar/hc2cb.h */ /* * This function contains 58 FP additions, 32 FP multiplications, * (or, 36 additions, 10 multiplications, 22 fused multiply/add), * 34 stack variables, 2 constants, and 24 memory accesses */ #include "rdft/scalar/hc2cb.h" static void hc2cbdft_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP866025403, +0.866025403784438646763723170752936183471402627); DK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) { E Tp, TD, Tj, TV, Tq, Tr, TG, TP, T4, Ts, TQ, Tb, Tc, TA, TU; { E Tf, TF, Ti, TE, Td, Te; Td = Ip[WS(rs, 1)]; Te = Im[WS(rs, 1)]; Tf = Td - Te; TF = Te + Td; { E Tn, To, Tg, Th; Tn = Ip[0]; To = Im[WS(rs, 2)]; Tp = Tn - To; TD = Tn + To; Tg = Ip[WS(rs, 2)]; Th = Im[0]; Ti = Tg - Th; TE = Tg + Th; } Tj = Tf - Ti; TV = TF + TE; Tq = Tf + Ti; Tr = FNMS(KP500000000, Tq, Tp); TG = TE - TF; TP = FNMS(KP500000000, TG, TD); } { E Tw, Ta, Ty, T7, Tx, T2, T3, Tz; T2 = Rp[0]; T3 = Rm[WS(rs, 2)]; T4 = T2 + T3; Tw = T2 - T3; { E T8, T9, T5, T6; T8 = Rm[WS(rs, 1)]; T9 = Rp[WS(rs, 1)]; Ta = T8 + T9; Ty = T8 - T9; T5 = Rp[WS(rs, 2)]; T6 = Rm[0]; T7 = T5 + T6; Tx = T5 - T6; } Ts = T7 - Ta; TQ = Tx - Ty; Tb = T7 + Ta; Tc = FNMS(KP500000000, Tb, T4); Tz = Tx + Ty; TA = Tw + Tz; TU = FNMS(KP500000000, Tz, Tw); } { E TN, TY, TR, TW, TS, TZ, TO, TX, T10, TT; TN = T4 + Tb; TY = Tp + Tq; TR = FMA(KP866025403, TQ, TP); TW = FNMS(KP866025403, TV, TU); TO = W[0]; TS = TO * TR; TZ = TO * TW; TT = W[1]; TX = FMA(TT, TW, TS); T10 = FNMS(TT, TR, TZ); Rp[0] = TN - TX; Ip[0] = TY + T10; Rm[0] = TN + TX; Im[0] = T10 - TY; } { E Tt, TH, Tv, TB, TC, TL, T1, Tl, Tm, TJ, Tk; Tt = FNMS(KP866025403, Ts, Tr); TH = TD + TG; Tv = W[4]; TB = Tv * TA; TC = W[5]; TL = TC * TA; Tk = FNMS(KP866025403, Tj, Tc); T1 = W[3]; Tl = T1 * Tk; Tm = W[2]; TJ = Tm * Tk; { E Tu, TI, TK, TM; Tu = FMA(Tm, Tt, Tl); TI = FNMS(TC, TH, TB); Ip[WS(rs, 1)] = Tu + TI; Im[WS(rs, 1)] = TI - Tu; TK = FNMS(T1, Tt, TJ); TM = FMA(Tv, TH, TL); Rp[WS(rs, 1)] = TK - TM; Rm[WS(rs, 1)] = TK + TM; } } { E T15, T11, T13, T14, T1d, T18, T1b, T19, T1f, T12, T17; T15 = FMA(KP866025403, Ts, Tr); T12 = FMA(KP866025403, Tj, Tc); T11 = W[6]; T13 = T11 * T12; T14 = W[7]; T1d = T14 * T12; T18 = FNMS(KP866025403, TQ, TP); T1b = FMA(KP866025403, TV, TU); T17 = W[8]; T19 = T17 * T18; T1f = T17 * T1b; { E T16, T1e, T1c, T1g, T1a; T16 = FNMS(T14, T15, T13); T1e = FMA(T11, T15, T1d); T1a = W[9]; T1c = FMA(T1a, T1b, T19); T1g = FNMS(T1a, T18, T1f); Rp[WS(rs, 2)] = T16 - T1c; Ip[WS(rs, 2)] = T1e + T1g; Rm[WS(rs, 2)] = T16 + T1c; Im[WS(rs, 2)] = T1g - T1e; } } } } } static const tw_instr twinstr[] = { { TW_FULL, 1, 6 }, { TW_NEXT, 1, 0 } }; static const hc2c_desc desc = { 6, "hc2cbdft_6", twinstr, &GENUS, { 36, 10, 22, 0 } }; void X(codelet_hc2cbdft_6) (planner *p) { X(khc2c_register) (p, hc2cbdft_6, &desc, HC2C_VIA_DFT); } #else /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hc2cbdft_6 -include rdft/scalar/hc2cb.h */ /* * This function contains 58 FP additions, 28 FP multiplications, * (or, 44 additions, 14 multiplications, 14 fused multiply/add), * 29 stack variables, 2 constants, and 24 memory accesses */ #include "rdft/scalar/hc2cb.h" static void hc2cbdft_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP866025403, +0.866025403784438646763723170752936183471402627); { INT m; for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) { E T4, Tv, Tr, TL, Tb, Tc, Ty, TP, To, TB, Tj, TQ, Tp, Tq, TE; E TM; { E Ta, Tx, T7, Tw, T2, T3; T2 = Rp[0]; T3 = Rm[WS(rs, 2)]; T4 = T2 + T3; Tv = T2 - T3; { E T8, T9, T5, T6; T8 = Rm[WS(rs, 1)]; T9 = Rp[WS(rs, 1)]; Ta = T8 + T9; Tx = T8 - T9; T5 = Rp[WS(rs, 2)]; T6 = Rm[0]; T7 = T5 + T6; Tw = T5 - T6; } Tr = KP866025403 * (T7 - Ta); TL = KP866025403 * (Tw - Tx); Tb = T7 + Ta; Tc = FNMS(KP500000000, Tb, T4); Ty = Tw + Tx; TP = FNMS(KP500000000, Ty, Tv); } { E Tf, TC, Ti, TD, Td, Te; Td = Ip[WS(rs, 1)]; Te = Im[WS(rs, 1)]; Tf = Td - Te; TC = Te + Td; { E Tm, Tn, Tg, Th; Tm = Ip[0]; Tn = Im[WS(rs, 2)]; To = Tm - Tn; TB = Tm + Tn; Tg = Ip[WS(rs, 2)]; Th = Im[0]; Ti = Tg - Th; TD = Tg + Th; } Tj = KP866025403 * (Tf - Ti); TQ = KP866025403 * (TC + TD); Tp = Tf + Ti; Tq = FNMS(KP500000000, Tp, To); TE = TC - TD; TM = FMA(KP500000000, TE, TB); } { E TJ, TT, TS, TU; TJ = T4 + Tb; TT = To + Tp; { E TN, TR, TK, TO; TN = TL + TM; TR = TP - TQ; TK = W[0]; TO = W[1]; TS = FMA(TK, TN, TO * TR); TU = FNMS(TO, TN, TK * TR); } Rp[0] = TJ - TS; Ip[0] = TT + TU; Rm[0] = TJ + TS; Im[0] = TU - TT; } { E TZ, T15, T14, T16; { E TW, TY, TV, TX; TW = Tc + Tj; TY = Tr + Tq; TV = W[6]; TX = W[7]; TZ = FNMS(TX, TY, TV * TW); T15 = FMA(TX, TW, TV * TY); } { E T11, T13, T10, T12; T11 = TM - TL; T13 = TP + TQ; T10 = W[8]; T12 = W[9]; T14 = FMA(T10, T11, T12 * T13); T16 = FNMS(T12, T11, T10 * T13); } Rp[WS(rs, 2)] = TZ - T14; Ip[WS(rs, 2)] = T15 + T16; Rm[WS(rs, 2)] = TZ + T14; Im[WS(rs, 2)] = T16 - T15; } { E Tt, TH, TG, TI; { E Tk, Ts, T1, Tl; Tk = Tc - Tj; Ts = Tq - Tr; T1 = W[3]; Tl = W[2]; Tt = FMA(T1, Tk, Tl * Ts); TH = FNMS(T1, Ts, Tl * Tk); } { E Tz, TF, Tu, TA; Tz = Tv + Ty; TF = TB - TE; Tu = W[4]; TA = W[5]; TG = FNMS(TA, TF, Tu * Tz); TI = FMA(TA, Tz, Tu * TF); } Ip[WS(rs, 1)] = Tt + TG; Rp[WS(rs, 1)] = TH - TI; Im[WS(rs, 1)] = TG - Tt; Rm[WS(rs, 1)] = TH + TI; } } } } static const tw_instr twinstr[] = { { TW_FULL, 1, 6 }, { TW_NEXT, 1, 0 } }; static const hc2c_desc desc = { 6, "hc2cbdft_6", twinstr, &GENUS, { 44, 14, 14, 0 } }; void X(codelet_hc2cbdft_6) (planner *p) { X(khc2c_register) (p, hc2cbdft_6, &desc, HC2C_VIA_DFT); } #endif