/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Tue Sep 14 10:47:22 EDT 2021 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dit -name hc2cfdftv_6 -include rdft/simd/hc2cfv.h */ /* * This function contains 29 FP additions, 30 FP multiplications, * (or, 17 additions, 18 multiplications, 12 fused multiply/add), * 38 stack variables, 2 constants, and 12 memory accesses */ #include "rdft/simd/hc2cfv.h" static void hc2cfdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP866025403, +0.866025403784438646763723170752936183471402627); DVK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) { V T8, Tr, Tf, Tk, Tl, Ts, Tt, Tu, T3, Tj, Te, Th, T7, Ta, T1; V T2, Ti, Tc, Td, Tb, Tg, T5, T6, T4, T9, Tm, Tv, Tp, Tq, Tn; V To, Ty, Tz, Tw, Tx; T1 = LD(&(Rp[0]), ms, &(Rp[0])); T2 = LD(&(Rm[0]), -ms, &(Rm[0])); T3 = VFMACONJ(T2, T1); Ti = LDW(&(W[0])); Tj = VZMULIJ(Ti, VFNMSCONJ(T2, T1)); Tc = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); Td = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); Tb = LDW(&(W[TWVL * 8])); Te = VZMULIJ(Tb, VFNMSCONJ(Td, Tc)); Tg = LDW(&(W[TWVL * 6])); Th = VZMULJ(Tg, VFMACONJ(Td, Tc)); T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); T6 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); T4 = LDW(&(W[TWVL * 4])); T7 = VZMULIJ(T4, VFNMSCONJ(T6, T5)); T9 = LDW(&(W[TWVL * 2])); Ta = VZMULJ(T9, VFMACONJ(T6, T5)); T8 = VSUB(T3, T7); Tr = VADD(T3, T7); Tf = VSUB(Ta, Te); Tk = VSUB(Th, Tj); Tl = VADD(Tf, Tk); Ts = VADD(Ta, Te); Tt = VADD(Tj, Th); Tu = VADD(Ts, Tt); Tm = VMUL(LDK(KP500000000), VADD(T8, Tl)); ST(&(Rp[0]), Tm, ms, &(Rp[0])); Tv = VCONJ(VMUL(LDK(KP500000000), VADD(Tr, Tu))); ST(&(Rm[WS(rs, 2)]), Tv, -ms, &(Rm[0])); Tn = VFNMS(LDK(KP500000000), Tl, T8); To = VMUL(LDK(KP866025403), VSUB(Tk, Tf)); Tp = VMUL(LDK(KP500000000), VFNMSI(To, Tn)); Tq = VCONJ(VMUL(LDK(KP500000000), VFMAI(To, Tn))); ST(&(Rp[WS(rs, 2)]), Tp, ms, &(Rp[0])); ST(&(Rm[WS(rs, 1)]), Tq, -ms, &(Rm[WS(rs, 1)])); Tw = VFNMS(LDK(KP500000000), Tu, Tr); Tx = VMUL(LDK(KP866025403), VSUB(Tt, Ts)); Ty = VCONJ(VMUL(LDK(KP500000000), VFNMSI(Tx, Tw))); Tz = VMUL(LDK(KP500000000), VFMAI(Tx, Tw)); ST(&(Rm[0]), Ty, -ms, &(Rm[0])); ST(&(Rp[WS(rs, 1)]), Tz, ms, &(Rp[WS(rs, 1)])); } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(1, 1), VTW(1, 2), VTW(1, 3), VTW(1, 4), VTW(1, 5), { TW_NEXT, VL, 0 } }; static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cfdftv_6"), twinstr, &GENUS, { 17, 18, 12, 0 } }; void XSIMD(codelet_hc2cfdftv_6) (planner *p) { X(khc2c_register) (p, hc2cfdftv_6, &desc, HC2C_VIA_DFT); } #else /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dit -name hc2cfdftv_6 -include rdft/simd/hc2cfv.h */ /* * This function contains 29 FP additions, 20 FP multiplications, * (or, 27 additions, 18 multiplications, 2 fused multiply/add), * 42 stack variables, 3 constants, and 12 memory accesses */ #include "rdft/simd/hc2cfv.h" static void hc2cfdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP250000000, +0.250000000000000000000000000000000000000000000); DVK(KP866025403, +0.866025403784438646763723170752936183471402627); DVK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) { V Ta, Tu, Tn, Tw, Ti, Tv, T1, T8, Tg, Tf, T7, T3, Te, T6, T2; V T4, T9, T5, Tk, Tm, Tj, Tl, Tc, Th, Tb, Td, Tr, Tp, Tq, To; V Tt, Ts, TA, Ty, Tz, Tx, TC, TB; T1 = LD(&(Rp[0]), ms, &(Rp[0])); T8 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); Tg = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); Te = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); Tf = VCONJ(Te); T6 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); T7 = VCONJ(T6); T2 = LD(&(Rm[0]), -ms, &(Rm[0])); T3 = VCONJ(T2); T4 = VADD(T1, T3); T5 = LDW(&(W[TWVL * 4])); T9 = VZMULIJ(T5, VSUB(T7, T8)); Ta = VADD(T4, T9); Tu = VSUB(T4, T9); Tj = LDW(&(W[0])); Tk = VZMULIJ(Tj, VSUB(T3, T1)); Tl = LDW(&(W[TWVL * 6])); Tm = VZMULJ(Tl, VADD(Tf, Tg)); Tn = VADD(Tk, Tm); Tw = VSUB(Tm, Tk); Tb = LDW(&(W[TWVL * 2])); Tc = VZMULJ(Tb, VADD(T7, T8)); Td = LDW(&(W[TWVL * 8])); Th = VZMULIJ(Td, VSUB(Tf, Tg)); Ti = VADD(Tc, Th); Tv = VSUB(Tc, Th); Tr = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VSUB(Tn, Ti)))); To = VADD(Ti, Tn); Tp = VMUL(LDK(KP500000000), VADD(Ta, To)); Tq = VFNMS(LDK(KP250000000), To, VMUL(LDK(KP500000000), Ta)); ST(&(Rp[0]), Tp, ms, &(Rp[0])); Tt = VCONJ(VADD(Tq, Tr)); ST(&(Rm[WS(rs, 1)]), Tt, -ms, &(Rm[WS(rs, 1)])); Ts = VSUB(Tq, Tr); ST(&(Rp[WS(rs, 2)]), Ts, ms, &(Rp[0])); TA = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VSUB(Tw, Tv)))); Tx = VADD(Tv, Tw); Ty = VCONJ(VMUL(LDK(KP500000000), VADD(Tu, Tx))); Tz = VFNMS(LDK(KP250000000), Tx, VMUL(LDK(KP500000000), Tu)); ST(&(Rm[WS(rs, 2)]), Ty, -ms, &(Rm[0])); TC = VADD(Tz, TA); ST(&(Rp[WS(rs, 1)]), TC, ms, &(Rp[WS(rs, 1)])); TB = VCONJ(VSUB(Tz, TA)); ST(&(Rm[0]), TB, -ms, &(Rm[0])); } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(1, 1), VTW(1, 2), VTW(1, 3), VTW(1, 4), VTW(1, 5), { TW_NEXT, VL, 0 } }; static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cfdftv_6"), twinstr, &GENUS, { 27, 18, 2, 0 } }; void XSIMD(codelet_hc2cfdftv_6) (planner *p) { X(khc2c_register) (p, hc2cfdftv_6, &desc, HC2C_VIA_DFT); } #endif