/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Tue Sep 14 10:46:47 EDT 2021 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -name r2cb_9 -include rdft/scalar/r2cb.h */ /* * This function contains 32 FP additions, 24 FP multiplications, * (or, 8 additions, 0 multiplications, 24 fused multiply/add), * 35 stack variables, 12 constants, and 18 memory accesses */ #include "rdft/scalar/r2cb.h" static void r2cb_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP1_705737063, +1.705737063904886419256501927880148143872040591); DK(KP1_969615506, +1.969615506024416118733486049179046027341286503); DK(KP984807753, +0.984807753012208059366743024589523013670643252); DK(KP176326980, +0.176326980708464973471090386868618986121633062); DK(KP1_326827896, +1.326827896337876792410842639271782594433726619); DK(KP1_532088886, +1.532088886237956070404785301110833347871664914); DK(KP766044443, +0.766044443118978035202392650555416673935832457); DK(KP839099631, +0.839099631177280011763127298123181364687434283); DK(KP866025403, +0.866025403784438646763723170752936183471402627); DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) { E T3, Tp, Tb, Th, Ti, T8, Tl, Tq, Tg, Tr, Tv, Tw; { E Ta, T1, T2, T9; Ta = Ci[WS(csi, 3)]; T1 = Cr[0]; T2 = Cr[WS(csr, 3)]; T9 = T1 - T2; T3 = FMA(KP2_000000000, T2, T1); Tp = FMA(KP1_732050807, Ta, T9); Tb = FNMS(KP1_732050807, Ta, T9); } { E T4, T7, Tk, Tf, Tj, Tc; T4 = Cr[WS(csr, 1)]; Th = Ci[WS(csi, 1)]; { E T5, T6, Td, Te; T5 = Cr[WS(csr, 4)]; T6 = Cr[WS(csr, 2)]; T7 = T5 + T6; Tk = T6 - T5; Td = Ci[WS(csi, 4)]; Te = Ci[WS(csi, 2)]; Tf = Td + Te; Ti = Td - Te; } T8 = T4 + T7; Tj = FNMS(KP500000000, Ti, Th); Tl = FNMS(KP866025403, Tk, Tj); Tq = FMA(KP866025403, Tk, Tj); Tc = FNMS(KP500000000, T7, T4); Tg = FNMS(KP866025403, Tf, Tc); Tr = FMA(KP866025403, Tf, Tc); } R0[0] = FMA(KP2_000000000, T8, T3); Tv = T3 - T8; Tw = Ti + Th; R1[WS(rs, 1)] = FNMS(KP1_732050807, Tw, Tv); R0[WS(rs, 3)] = FMA(KP1_732050807, Tw, Tv); { E To, Tm, Tn, Tu, Ts, Tt; To = FMA(KP839099631, Tg, Tl); Tm = FNMS(KP839099631, Tl, Tg); Tn = FNMS(KP766044443, Tm, Tb); R1[0] = FMA(KP1_532088886, Tm, Tb); R1[WS(rs, 3)] = FMA(KP1_326827896, To, Tn); R0[WS(rs, 2)] = FNMS(KP1_326827896, To, Tn); Tu = FMA(KP176326980, Tq, Tr); Ts = FNMS(KP176326980, Tr, Tq); Tt = FMA(KP984807753, Ts, Tp); R0[WS(rs, 1)] = FNMS(KP1_969615506, Ts, Tp); R0[WS(rs, 4)] = FMA(KP1_705737063, Tu, Tt); R1[WS(rs, 2)] = FNMS(KP1_705737063, Tu, Tt); } } } } static const kr2c_desc desc = { 9, "r2cb_9", { 8, 0, 24, 0 }, &GENUS }; void X(codelet_r2cb_9) (planner *p) { X(kr2c_register) (p, r2cb_9, &desc); } #else /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -name r2cb_9 -include rdft/scalar/r2cb.h */ /* * This function contains 32 FP additions, 18 FP multiplications, * (or, 22 additions, 8 multiplications, 10 fused multiply/add), * 35 stack variables, 12 constants, and 18 memory accesses */ #include "rdft/scalar/r2cb.h" static void r2cb_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP984807753, +0.984807753012208059366743024589523013670643252); DK(KP173648177, +0.173648177666930348851716626769314796000375677); DK(KP300767466, +0.300767466360870593278543795225003852144476517); DK(KP1_705737063, +1.705737063904886419256501927880148143872040591); DK(KP642787609, +0.642787609686539326322643409907263432907559884); DK(KP766044443, +0.766044443118978035202392650555416673935832457); DK(KP1_326827896, +1.326827896337876792410842639271782594433726619); DK(KP1_113340798, +1.113340798452838732905825904094046265936583811); DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP866025403, +0.866025403784438646763723170752936183471402627); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) { E T3, Tq, Tc, Tk, Tj, T8, Tm, Ts, Th, Tr, Tw, Tx; { E Tb, T1, T2, T9, Ta; Ta = Ci[WS(csi, 3)]; Tb = KP1_732050807 * Ta; T1 = Cr[0]; T2 = Cr[WS(csr, 3)]; T9 = T1 - T2; T3 = FMA(KP2_000000000, T2, T1); Tq = T9 + Tb; Tc = T9 - Tb; } { E T4, T7, Ti, Tg, Tl, Td; T4 = Cr[WS(csr, 1)]; Tk = Ci[WS(csi, 1)]; { E T5, T6, Te, Tf; T5 = Cr[WS(csr, 4)]; T6 = Cr[WS(csr, 2)]; T7 = T5 + T6; Ti = KP866025403 * (T5 - T6); Te = Ci[WS(csi, 4)]; Tf = Ci[WS(csi, 2)]; Tg = KP866025403 * (Te + Tf); Tj = Tf - Te; } T8 = T4 + T7; Tl = FMA(KP500000000, Tj, Tk); Tm = Ti + Tl; Ts = Tl - Ti; Td = FNMS(KP500000000, T7, T4); Th = Td - Tg; Tr = Td + Tg; } R0[0] = FMA(KP2_000000000, T8, T3); Tw = T3 - T8; Tx = KP1_732050807 * (Tk - Tj); R1[WS(rs, 1)] = Tw - Tx; R0[WS(rs, 3)] = Tw + Tx; { E Tp, Tn, To, Tv, Tt, Tu; Tp = FMA(KP1_113340798, Th, KP1_326827896 * Tm); Tn = FNMS(KP642787609, Tm, KP766044443 * Th); To = Tc - Tn; R1[0] = FMA(KP2_000000000, Tn, Tc); R1[WS(rs, 3)] = To + Tp; R0[WS(rs, 2)] = To - Tp; Tv = FMA(KP1_705737063, Tr, KP300767466 * Ts); Tt = FNMS(KP984807753, Ts, KP173648177 * Tr); Tu = Tq - Tt; R0[WS(rs, 1)] = FMA(KP2_000000000, Tt, Tq); R0[WS(rs, 4)] = Tu + Tv; R1[WS(rs, 2)] = Tu - Tv; } } } } static const kr2c_desc desc = { 9, "r2cb_9", { 22, 8, 10, 0 }, &GENUS }; void X(codelet_r2cb_9) (planner *p) { X(kr2c_register) (p, r2cb_9, &desc); } #endif