/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Tue Sep 14 10:46:48 EDT 2021 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 14 -name r2cb_14 -include rdft/scalar/r2cb.h */ /* * This function contains 62 FP additions, 44 FP multiplications, * (or, 18 additions, 0 multiplications, 44 fused multiply/add), * 46 stack variables, 7 constants, and 28 memory accesses */ #include "rdft/scalar/r2cb.h" static void r2cb_14(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP1_949855824, +1.949855824363647214036263365987862434465571601); DK(KP1_801937735, +1.801937735804838252472204639014890102331838324); DK(KP692021471, +0.692021471630095869627814897002069140197260599); DK(KP801937735, +0.801937735804838252472204639014890102331838324); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); DK(KP356895867, +0.356895867892209443894399510021300583399127187); DK(KP554958132, +0.554958132087371191422194871006410481067288862); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(56, rs), MAKE_VOLATILE_STRIDE(56, csr), MAKE_VOLATILE_STRIDE(56, csi)) { E T3, Te, To, TK, Tu, TM, Tr, TL, Tv, TA, TX, TS, TN, TF, T6; E Tf, Tc, Th, T9, Tg, Tj, Tx, TU, TP, TH, TC, T1, T2, Td, Ti; T1 = Cr[0]; T2 = Cr[WS(csr, 7)]; T3 = T1 - T2; Te = T1 + T2; { E Tm, Tn, T4, T5; Tm = Ci[WS(csi, 4)]; Tn = Ci[WS(csi, 3)]; To = Tm - Tn; TK = Tm + Tn; { E Ts, Tt, Tp, Tq; Ts = Ci[WS(csi, 6)]; Tt = Ci[WS(csi, 1)]; Tu = Ts - Tt; TM = Ts + Tt; Tp = Ci[WS(csi, 2)]; Tq = Ci[WS(csi, 5)]; Tr = Tp - Tq; TL = Tp + Tq; } Tv = FMA(KP554958132, Tu, Tr); TA = FMA(KP554958132, To, Tu); TX = FNMS(KP554958132, TL, TK); TS = FMA(KP554958132, TK, TM); TN = FMA(KP554958132, TM, TL); TF = FNMS(KP554958132, Tr, To); T4 = Cr[WS(csr, 2)]; T5 = Cr[WS(csr, 5)]; T6 = T4 - T5; Tf = T4 + T5; { E Ta, Tb, T7, T8; Ta = Cr[WS(csr, 6)]; Tb = Cr[WS(csr, 1)]; Tc = Ta - Tb; Th = Ta + Tb; T7 = Cr[WS(csr, 4)]; T8 = Cr[WS(csr, 3)]; T9 = T7 - T8; Tg = T7 + T8; } Tj = FNMS(KP356895867, Tg, Tf); Tx = FNMS(KP356895867, Tf, Th); TU = FNMS(KP356895867, Tc, T9); TP = FNMS(KP356895867, T6, Tc); TH = FNMS(KP356895867, T9, T6); TC = FNMS(KP356895867, Th, Tg); } Td = T6 + T9 + Tc; R1[WS(rs, 3)] = FMA(KP2_000000000, Td, T3); Ti = Tf + Tg + Th; R0[0] = FMA(KP2_000000000, Ti, Te); { E Tw, Tl, Tk, TY, TW, TV; Tw = FMA(KP801937735, Tv, To); Tk = FNMS(KP692021471, Tj, Th); Tl = FNMS(KP1_801937735, Tk, Te); R0[WS(rs, 4)] = FNMS(KP1_949855824, Tw, Tl); R0[WS(rs, 3)] = FMA(KP1_949855824, Tw, Tl); TY = FNMS(KP801937735, TX, TM); TV = FNMS(KP692021471, TU, T6); TW = FNMS(KP1_801937735, TV, T3); R1[WS(rs, 1)] = FNMS(KP1_949855824, TY, TW); R1[WS(rs, 5)] = FMA(KP1_949855824, TY, TW); } { E TB, Tz, Ty, TO, TJ, TI; TB = FNMS(KP801937735, TA, Tr); Ty = FNMS(KP692021471, Tx, Tg); Tz = FNMS(KP1_801937735, Ty, Te); R0[WS(rs, 1)] = FNMS(KP1_949855824, TB, Tz); R0[WS(rs, 6)] = FMA(KP1_949855824, TB, Tz); TO = FMA(KP801937735, TN, TK); TI = FNMS(KP692021471, TH, Tc); TJ = FNMS(KP1_801937735, TI, T3); R1[0] = FNMS(KP1_949855824, TO, TJ); R1[WS(rs, 6)] = FMA(KP1_949855824, TO, TJ); } { E TT, TR, TQ, TG, TE, TD; TT = FNMS(KP801937735, TS, TL); TQ = FNMS(KP692021471, TP, T9); TR = FNMS(KP1_801937735, TQ, T3); R1[WS(rs, 4)] = FNMS(KP1_949855824, TT, TR); R1[WS(rs, 2)] = FMA(KP1_949855824, TT, TR); TG = FNMS(KP801937735, TF, Tu); TD = FNMS(KP692021471, TC, Tf); TE = FNMS(KP1_801937735, TD, Te); R0[WS(rs, 5)] = FNMS(KP1_949855824, TG, TE); R0[WS(rs, 2)] = FMA(KP1_949855824, TG, TE); } } } } static const kr2c_desc desc = { 14, "r2cb_14", { 18, 0, 44, 0 }, &GENUS }; void X(codelet_r2cb_14) (planner *p) { X(kr2c_register) (p, r2cb_14, &desc); } #else /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 14 -name r2cb_14 -include rdft/scalar/r2cb.h */ /* * This function contains 62 FP additions, 38 FP multiplications, * (or, 36 additions, 12 multiplications, 26 fused multiply/add), * 28 stack variables, 7 constants, and 28 memory accesses */ #include "rdft/scalar/r2cb.h" static void r2cb_14(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP1_801937735, +1.801937735804838252472204639014890102331838324); DK(KP445041867, +0.445041867912628808577805128993589518932711138); DK(KP1_246979603, +1.246979603717467061050009768008479621264549462); DK(KP867767478, +0.867767478235116240951536665696717509219981456); DK(KP1_949855824, +1.949855824363647214036263365987862434465571601); DK(KP1_563662964, +1.563662964936059617416889053348115500464669037); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(56, rs), MAKE_VOLATILE_STRIDE(56, csr), MAKE_VOLATILE_STRIDE(56, csi)) { E T3, Td, T6, Te, Tq, Tz, Tn, Ty, Tc, Tg, Tk, Tx, T9, Tf, T1; E T2; T1 = Cr[0]; T2 = Cr[WS(csr, 7)]; T3 = T1 - T2; Td = T1 + T2; { E T4, T5, To, Tp; T4 = Cr[WS(csr, 2)]; T5 = Cr[WS(csr, 5)]; T6 = T4 - T5; Te = T4 + T5; To = Ci[WS(csi, 2)]; Tp = Ci[WS(csi, 5)]; Tq = To - Tp; Tz = To + Tp; } { E Tl, Tm, Ta, Tb; Tl = Ci[WS(csi, 6)]; Tm = Ci[WS(csi, 1)]; Tn = Tl - Tm; Ty = Tl + Tm; Ta = Cr[WS(csr, 6)]; Tb = Cr[WS(csr, 1)]; Tc = Ta - Tb; Tg = Ta + Tb; } { E Ti, Tj, T7, T8; Ti = Ci[WS(csi, 4)]; Tj = Ci[WS(csi, 3)]; Tk = Ti - Tj; Tx = Ti + Tj; T7 = Cr[WS(csr, 4)]; T8 = Cr[WS(csr, 3)]; T9 = T7 - T8; Tf = T7 + T8; } R1[WS(rs, 3)] = FMA(KP2_000000000, T6 + T9 + Tc, T3); R0[0] = FMA(KP2_000000000, Te + Tf + Tg, Td); { E Tr, Th, TE, TD; Tr = FNMS(KP1_949855824, Tn, KP1_563662964 * Tk) - (KP867767478 * Tq); Th = FMA(KP1_246979603, Tf, Td) + FNMA(KP445041867, Tg, KP1_801937735 * Te); R0[WS(rs, 2)] = Th - Tr; R0[WS(rs, 5)] = Th + Tr; TE = FMA(KP867767478, Tx, KP1_563662964 * Ty) - (KP1_949855824 * Tz); TD = FMA(KP1_246979603, Tc, T3) + FNMA(KP1_801937735, T9, KP445041867 * T6); R1[WS(rs, 2)] = TD - TE; R1[WS(rs, 4)] = TD + TE; } { E Tt, Ts, TA, Tw; Tt = FMA(KP867767478, Tk, KP1_563662964 * Tn) - (KP1_949855824 * Tq); Ts = FMA(KP1_246979603, Tg, Td) + FNMA(KP1_801937735, Tf, KP445041867 * Te); R0[WS(rs, 6)] = Ts - Tt; R0[WS(rs, 1)] = Ts + Tt; TA = FNMS(KP1_949855824, Ty, KP1_563662964 * Tx) - (KP867767478 * Tz); Tw = FMA(KP1_246979603, T9, T3) + FNMA(KP445041867, Tc, KP1_801937735 * T6); R1[WS(rs, 5)] = Tw - TA; R1[WS(rs, 1)] = Tw + TA; } { E TC, TB, Tv, Tu; TC = FMA(KP1_563662964, Tz, KP1_949855824 * Tx) + (KP867767478 * Ty); TB = FMA(KP1_246979603, T6, T3) + FNMA(KP1_801937735, Tc, KP445041867 * T9); R1[0] = TB - TC; R1[WS(rs, 6)] = TB + TC; Tv = FMA(KP1_563662964, Tq, KP1_949855824 * Tk) + (KP867767478 * Tn); Tu = FMA(KP1_246979603, Te, Td) + FNMA(KP1_801937735, Tg, KP445041867 * Tf); R0[WS(rs, 4)] = Tu - Tv; R0[WS(rs, 3)] = Tu + Tv; } } } } static const kr2c_desc desc = { 14, "r2cb_14", { 36, 12, 26, 0 }, &GENUS }; void X(codelet_r2cb_14) (planner *p) { X(kr2c_register) (p, r2cb_14, &desc); } #endif