/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Tue Sep 14 10:46:48 EDT 2021 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -name r2cb_12 -include rdft/scalar/r2cb.h */ /* * This function contains 38 FP additions, 16 FP multiplications, * (or, 22 additions, 0 multiplications, 16 fused multiply/add), * 25 stack variables, 2 constants, and 24 memory accesses */ #include "rdft/scalar/r2cb.h" static void r2cb_12(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(48, rs), MAKE_VOLATILE_STRIDE(48, csr), MAKE_VOLATILE_STRIDE(48, csi)) { E T8, Tb, Tk, Tz, Tu, Tv, Tn, Ty, T3, Tp, Tf, T6, Tq, Ti; { E T9, Ta, Tl, Tm; T8 = Cr[WS(csr, 3)]; T9 = Cr[WS(csr, 5)]; Ta = Cr[WS(csr, 1)]; Tb = T9 + Ta; Tk = FNMS(KP2_000000000, T8, Tb); Tz = T9 - Ta; Tu = Ci[WS(csi, 3)]; Tl = Ci[WS(csi, 5)]; Tm = Ci[WS(csi, 1)]; Tv = Tl + Tm; Tn = Tl - Tm; Ty = FMA(KP2_000000000, Tu, Tv); } { E Te, T1, T2, Td; Te = Ci[WS(csi, 4)]; T1 = Cr[0]; T2 = Cr[WS(csr, 4)]; Td = T1 - T2; T3 = FMA(KP2_000000000, T2, T1); Tp = FNMS(KP1_732050807, Te, Td); Tf = FMA(KP1_732050807, Te, Td); } { E Th, T4, T5, Tg; Th = Ci[WS(csi, 2)]; T4 = Cr[WS(csr, 6)]; T5 = Cr[WS(csr, 2)]; Tg = T4 - T5; T6 = FMA(KP2_000000000, T5, T4); Tq = FMA(KP1_732050807, Th, Tg); Ti = FNMS(KP1_732050807, Th, Tg); } { E T7, Tc, Tx, TA; T7 = T3 + T6; Tc = T8 + Tb; R0[WS(rs, 3)] = FNMS(KP2_000000000, Tc, T7); R0[0] = FMA(KP2_000000000, Tc, T7); { E Tj, To, TB, TC; Tj = Tf + Ti; To = FMA(KP1_732050807, Tn, Tk); R0[WS(rs, 1)] = Tj + To; R0[WS(rs, 4)] = Tj - To; TB = Tf - Ti; TC = FNMS(KP1_732050807, Tz, Ty); R1[WS(rs, 2)] = TB - TC; R1[WS(rs, 5)] = TB + TC; } Tx = Tp - Tq; TA = FMA(KP1_732050807, Tz, Ty); R1[0] = Tx - TA; R1[WS(rs, 3)] = Tx + TA; { E Tt, Tw, Tr, Ts; Tt = T3 - T6; Tw = Tu - Tv; R1[WS(rs, 4)] = FNMS(KP2_000000000, Tw, Tt); R1[WS(rs, 1)] = FMA(KP2_000000000, Tw, Tt); Tr = Tp + Tq; Ts = FNMS(KP1_732050807, Tn, Tk); R0[WS(rs, 5)] = Tr + Ts; R0[WS(rs, 2)] = Tr - Ts; } } } } } static const kr2c_desc desc = { 12, "r2cb_12", { 22, 0, 16, 0 }, &GENUS }; void X(codelet_r2cb_12) (planner *p) { X(kr2c_register) (p, r2cb_12, &desc); } #else /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -name r2cb_12 -include rdft/scalar/r2cb.h */ /* * This function contains 38 FP additions, 10 FP multiplications, * (or, 34 additions, 6 multiplications, 4 fused multiply/add), * 25 stack variables, 2 constants, and 24 memory accesses */ #include "rdft/scalar/r2cb.h" static void r2cb_12(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(48, rs), MAKE_VOLATILE_STRIDE(48, csr), MAKE_VOLATILE_STRIDE(48, csi)) { E T8, Tb, Tm, TA, Tw, Tx, Tp, TB, T3, Tr, Tg, T6, Ts, Tk; { E T9, Ta, Tn, To; T8 = Cr[WS(csr, 3)]; T9 = Cr[WS(csr, 5)]; Ta = Cr[WS(csr, 1)]; Tb = T9 + Ta; Tm = FMS(KP2_000000000, T8, Tb); TA = KP1_732050807 * (T9 - Ta); Tw = Ci[WS(csi, 3)]; Tn = Ci[WS(csi, 5)]; To = Ci[WS(csi, 1)]; Tx = Tn + To; Tp = KP1_732050807 * (Tn - To); TB = FMA(KP2_000000000, Tw, Tx); } { E Tf, T1, T2, Td, Te; Te = Ci[WS(csi, 4)]; Tf = KP1_732050807 * Te; T1 = Cr[0]; T2 = Cr[WS(csr, 4)]; Td = T1 - T2; T3 = FMA(KP2_000000000, T2, T1); Tr = Td - Tf; Tg = Td + Tf; } { E Tj, T4, T5, Th, Ti; Ti = Ci[WS(csi, 2)]; Tj = KP1_732050807 * Ti; T4 = Cr[WS(csr, 6)]; T5 = Cr[WS(csr, 2)]; Th = T4 - T5; T6 = FMA(KP2_000000000, T5, T4); Ts = Th + Tj; Tk = Th - Tj; } { E T7, Tc, Tz, TC; T7 = T3 + T6; Tc = KP2_000000000 * (T8 + Tb); R0[WS(rs, 3)] = T7 - Tc; R0[0] = T7 + Tc; { E Tl, Tq, TD, TE; Tl = Tg + Tk; Tq = Tm - Tp; R0[WS(rs, 1)] = Tl - Tq; R0[WS(rs, 4)] = Tl + Tq; TD = Tg - Tk; TE = TB - TA; R1[WS(rs, 2)] = TD - TE; R1[WS(rs, 5)] = TD + TE; } Tz = Tr - Ts; TC = TA + TB; R1[0] = Tz - TC; R1[WS(rs, 3)] = Tz + TC; { E Tv, Ty, Tt, Tu; Tv = T3 - T6; Ty = KP2_000000000 * (Tw - Tx); R1[WS(rs, 4)] = Tv - Ty; R1[WS(rs, 1)] = Tv + Ty; Tt = Tr + Ts; Tu = Tm + Tp; R0[WS(rs, 5)] = Tt - Tu; R0[WS(rs, 2)] = Tt + Tu; } } } } } static const kr2c_desc desc = { 12, "r2cb_12", { 34, 6, 4, 0 }, &GENUS }; void X(codelet_r2cb_12) (planner *p) { X(kr2c_register) (p, r2cb_12, &desc); } #endif