/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Tue Sep 14 10:47:14 EDT 2021 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 4 -dif -name hc2cbdft2_4 -include rdft/scalar/hc2cb.h */ /* * This function contains 30 FP additions, 12 FP multiplications, * (or, 24 additions, 6 multiplications, 6 fused multiply/add), * 23 stack variables, 0 constants, and 16 memory accesses */ #include "rdft/scalar/hc2cb.h" static void hc2cbdft2_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { { INT m; for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) { E T3, Tm, T6, Tn, Td, Tk, TB, Ty, Tv, Ts; { E Tg, Tc, T9, Tj; { E T1, T2, Ta, Tb; T1 = Rp[0]; T2 = Rm[WS(rs, 1)]; T3 = T1 + T2; Tg = T1 - T2; Ta = Ip[0]; Tb = Im[WS(rs, 1)]; Tc = Ta + Tb; Tm = Ta - Tb; } { E T4, T5, Th, Ti; T4 = Rp[WS(rs, 1)]; T5 = Rm[0]; T6 = T4 + T5; T9 = T4 - T5; Th = Ip[WS(rs, 1)]; Ti = Im[0]; Tj = Th + Ti; Tn = Th - Ti; } Td = T9 + Tc; Tk = Tg - Tj; TB = Tg + Tj; Ty = Tc - T9; Tv = Tm - Tn; Ts = T3 - T6; } { E T7, To, Te, Tp, T8, Tl, Tq, Tf; T7 = T3 + T6; To = Tm + Tn; T8 = W[0]; Te = T8 * Td; Tp = T8 * Tk; Tf = W[1]; Tl = FMA(Tf, Tk, Te); Tq = FNMS(Tf, Td, Tp); Rp[0] = T7 - Tl; Ip[0] = To + Tq; Rm[0] = T7 + Tl; Im[0] = Tq - To; } { E Tr, Tt, Tu, TD, Tz, TF, Tx; Tr = W[2]; Tt = Tr * Ts; Tu = W[3]; TD = Tu * Ts; Tx = W[4]; Tz = Tx * Ty; TF = Tx * TB; { E Tw, TE, TC, TG, TA; Tw = FNMS(Tu, Tv, Tt); TE = FMA(Tr, Tv, TD); TA = W[5]; TC = FMA(TA, TB, Tz); TG = FNMS(TA, Ty, TF); Rp[WS(rs, 1)] = Tw - TC; Ip[WS(rs, 1)] = TE + TG; Rm[WS(rs, 1)] = Tw + TC; Im[WS(rs, 1)] = TG - TE; } } } } } static const tw_instr twinstr[] = { { TW_FULL, 1, 4 }, { TW_NEXT, 1, 0 } }; static const hc2c_desc desc = { 4, "hc2cbdft2_4", twinstr, &GENUS, { 24, 6, 6, 0 } }; void X(codelet_hc2cbdft2_4) (planner *p) { X(khc2c_register) (p, hc2cbdft2_4, &desc, HC2C_VIA_DFT); } #else /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 4 -dif -name hc2cbdft2_4 -include rdft/scalar/hc2cb.h */ /* * This function contains 30 FP additions, 12 FP multiplications, * (or, 24 additions, 6 multiplications, 6 fused multiply/add), * 19 stack variables, 0 constants, and 16 memory accesses */ #include "rdft/scalar/hc2cb.h" static void hc2cbdft2_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { { INT m; for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) { E T3, Tl, T6, Tm, Td, Tj, Tx, Tv, Ts, Tq; { E Tf, Tc, T9, Ti; { E T1, T2, Ta, Tb; T1 = Rp[0]; T2 = Rm[WS(rs, 1)]; T3 = T1 + T2; Tf = T1 - T2; Ta = Ip[0]; Tb = Im[WS(rs, 1)]; Tc = Ta + Tb; Tl = Ta - Tb; } { E T4, T5, Tg, Th; T4 = Rp[WS(rs, 1)]; T5 = Rm[0]; T6 = T4 + T5; T9 = T4 - T5; Tg = Ip[WS(rs, 1)]; Th = Im[0]; Ti = Tg + Th; Tm = Tg - Th; } Td = T9 + Tc; Tj = Tf - Ti; Tx = Tf + Ti; Tv = Tc - T9; Ts = Tl - Tm; Tq = T3 - T6; } { E T7, Tn, Tk, To, T8, Te; T7 = T3 + T6; Tn = Tl + Tm; T8 = W[0]; Te = W[1]; Tk = FMA(T8, Td, Te * Tj); To = FNMS(Te, Td, T8 * Tj); Rp[0] = T7 - Tk; Ip[0] = Tn + To; Rm[0] = T7 + Tk; Im[0] = To - Tn; } { E Tt, Tz, Ty, TA; { E Tp, Tr, Tu, Tw; Tp = W[2]; Tr = W[3]; Tt = FNMS(Tr, Ts, Tp * Tq); Tz = FMA(Tr, Tq, Tp * Ts); Tu = W[4]; Tw = W[5]; Ty = FMA(Tu, Tv, Tw * Tx); TA = FNMS(Tw, Tv, Tu * Tx); } Rp[WS(rs, 1)] = Tt - Ty; Ip[WS(rs, 1)] = Tz + TA; Rm[WS(rs, 1)] = Tt + Ty; Im[WS(rs, 1)] = TA - Tz; } } } } static const tw_instr twinstr[] = { { TW_FULL, 1, 4 }, { TW_NEXT, 1, 0 } }; static const hc2c_desc desc = { 4, "hc2cbdft2_4", twinstr, &GENUS, { 24, 6, 6, 0 } }; void X(codelet_hc2cbdft2_4) (planner *p) { X(khc2c_register) (p, hc2cbdft2_4, &desc, HC2C_VIA_DFT); } #endif