/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Tue Sep 14 10:47:07 EDT 2021 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hc2cb_6 -include rdft/scalar/hc2cb.h */ /* * This function contains 46 FP additions, 32 FP multiplications, * (or, 24 additions, 10 multiplications, 22 fused multiply/add), * 31 stack variables, 2 constants, and 24 memory accesses */ #include "rdft/scalar/hc2cb.h" static void hc2cb_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP866025403, +0.866025403784438646763723170752936183471402627); DK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) { E Td, Tn, TO, TJ, TN, Tk, Tr, T3, TC, Ts, TQ, Ta, Tm, TF, TG; { E Tb, Tc, Tj, TI, Tg, TH; Tb = Ip[0]; Tc = Im[WS(rs, 2)]; Td = Tb - Tc; { E Th, Ti, Te, Tf; Th = Ip[WS(rs, 1)]; Ti = Im[WS(rs, 1)]; Tj = Th - Ti; TI = Th + Ti; Te = Ip[WS(rs, 2)]; Tf = Im[0]; Tg = Te - Tf; TH = Te + Tf; } Tn = Tj - Tg; TO = TH - TI; TJ = TH + TI; TN = Tb + Tc; Tk = Tg + Tj; Tr = FNMS(KP500000000, Tk, Td); } { E T9, TE, T6, TD, T1, T2; T1 = Rp[0]; T2 = Rm[WS(rs, 2)]; T3 = T1 + T2; TC = T1 - T2; { E T7, T8, T4, T5; T7 = Rm[WS(rs, 1)]; T8 = Rp[WS(rs, 1)]; T9 = T7 + T8; TE = T7 - T8; T4 = Rp[WS(rs, 2)]; T5 = Rm[0]; T6 = T4 + T5; TD = T4 - T5; } Ts = T6 - T9; TQ = TD - TE; Ta = T6 + T9; Tm = FNMS(KP500000000, Ta, T3); TF = TD + TE; TG = FNMS(KP500000000, TF, TC); } Rp[0] = T3 + Ta; Rm[0] = Td + Tk; { E To, Tt, Tp, Tu, Tl, Tq; To = FNMS(KP866025403, Tn, Tm); Tt = FNMS(KP866025403, Ts, Tr); Tl = W[2]; Tp = Tl * To; Tu = Tl * Tt; Tq = W[3]; Rp[WS(rs, 1)] = FNMS(Tq, Tt, Tp); Rm[WS(rs, 1)] = FMA(Tq, To, Tu); } { E T13, TZ, T11, T12, T14, T10; T13 = TN + TO; T10 = TC + TF; TZ = W[4]; T11 = TZ * T10; T12 = W[5]; T14 = T12 * T10; Ip[WS(rs, 1)] = FNMS(T12, T13, T11); Im[WS(rs, 1)] = FMA(TZ, T13, T14); } { E Tw, Tz, Tx, TA, Tv, Ty; Tw = FMA(KP866025403, Tn, Tm); Tz = FMA(KP866025403, Ts, Tr); Tv = W[6]; Tx = Tv * Tw; TA = Tv * Tz; Ty = W[7]; Rp[WS(rs, 2)] = FNMS(Ty, Tz, Tx); Rm[WS(rs, 2)] = FMA(Ty, Tw, TA); } { E TR, TX, TT, TV, TW, TY, TB, TL, TM, TS, TP, TU, TK; TP = FNMS(KP500000000, TO, TN); TR = FMA(KP866025403, TQ, TP); TX = FNMS(KP866025403, TQ, TP); TU = FMA(KP866025403, TJ, TG); TT = W[8]; TV = TT * TU; TW = W[9]; TY = TW * TU; TK = FNMS(KP866025403, TJ, TG); TB = W[0]; TL = TB * TK; TM = W[1]; TS = TM * TK; Ip[0] = FNMS(TM, TR, TL); Im[0] = FMA(TB, TR, TS); Ip[WS(rs, 2)] = FNMS(TW, TX, TV); Im[WS(rs, 2)] = FMA(TT, TX, TY); } } } } static const tw_instr twinstr[] = { { TW_FULL, 1, 6 }, { TW_NEXT, 1, 0 } }; static const hc2c_desc desc = { 6, "hc2cb_6", twinstr, &GENUS, { 24, 10, 22, 0 } }; void X(codelet_hc2cb_6) (planner *p) { X(khc2c_register) (p, hc2cb_6, &desc, HC2C_VIA_RDFT); } #else /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hc2cb_6 -include rdft/scalar/hc2cb.h */ /* * This function contains 46 FP additions, 28 FP multiplications, * (or, 32 additions, 14 multiplications, 14 fused multiply/add), * 25 stack variables, 2 constants, and 24 memory accesses */ #include "rdft/scalar/hc2cb.h" static void hc2cb_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP866025403, +0.866025403784438646763723170752936183471402627); { INT m; for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) { E T3, Ty, Td, TE, Ta, TO, Tr, TB, Tk, TL, Tn, TH; { E T1, T2, Tb, Tc; T1 = Rp[0]; T2 = Rm[WS(rs, 2)]; T3 = T1 + T2; Ty = T1 - T2; Tb = Ip[0]; Tc = Im[WS(rs, 2)]; Td = Tb - Tc; TE = Tb + Tc; } { E T6, Tz, T9, TA; { E T4, T5, T7, T8; T4 = Rp[WS(rs, 2)]; T5 = Rm[0]; T6 = T4 + T5; Tz = T4 - T5; T7 = Rm[WS(rs, 1)]; T8 = Rp[WS(rs, 1)]; T9 = T7 + T8; TA = T7 - T8; } Ta = T6 + T9; TO = KP866025403 * (Tz - TA); Tr = KP866025403 * (T6 - T9); TB = Tz + TA; } { E Tg, TG, Tj, TF; { E Te, Tf, Th, Ti; Te = Ip[WS(rs, 2)]; Tf = Im[0]; Tg = Te - Tf; TG = Te + Tf; Th = Ip[WS(rs, 1)]; Ti = Im[WS(rs, 1)]; Tj = Th - Ti; TF = Th + Ti; } Tk = Tg + Tj; TL = KP866025403 * (TG + TF); Tn = KP866025403 * (Tj - Tg); TH = TF - TG; } Rp[0] = T3 + Ta; Rm[0] = Td + Tk; { E TC, TI, Tx, TD; TC = Ty + TB; TI = TE - TH; Tx = W[4]; TD = W[5]; Ip[WS(rs, 1)] = FNMS(TD, TI, Tx * TC); Im[WS(rs, 1)] = FMA(TD, TC, Tx * TI); } { E To, Tu, Ts, Tw, Tm, Tq; Tm = FNMS(KP500000000, Ta, T3); To = Tm - Tn; Tu = Tm + Tn; Tq = FNMS(KP500000000, Tk, Td); Ts = Tq - Tr; Tw = Tr + Tq; { E Tl, Tp, Tt, Tv; Tl = W[2]; Tp = W[3]; Rp[WS(rs, 1)] = FNMS(Tp, Ts, Tl * To); Rm[WS(rs, 1)] = FMA(Tl, Ts, Tp * To); Tt = W[6]; Tv = W[7]; Rp[WS(rs, 2)] = FNMS(Tv, Tw, Tt * Tu); Rm[WS(rs, 2)] = FMA(Tt, Tw, Tv * Tu); } } { E TM, TS, TQ, TU, TK, TP; TK = FNMS(KP500000000, TB, Ty); TM = TK - TL; TS = TK + TL; TP = FMA(KP500000000, TH, TE); TQ = TO + TP; TU = TP - TO; { E TJ, TN, TR, TT; TJ = W[0]; TN = W[1]; Ip[0] = FNMS(TN, TQ, TJ * TM); Im[0] = FMA(TN, TM, TJ * TQ); TR = W[8]; TT = W[9]; Ip[WS(rs, 2)] = FNMS(TT, TU, TR * TS); Im[WS(rs, 2)] = FMA(TT, TS, TR * TU); } } } } } static const tw_instr twinstr[] = { { TW_FULL, 1, 6 }, { TW_NEXT, 1, 0 } }; static const hc2c_desc desc = { 6, "hc2cb_6", twinstr, &GENUS, { 32, 14, 14, 0 } }; void X(codelet_hc2cb_6) (planner *p) { X(khc2c_register) (p, hc2cb_6, &desc, HC2C_VIA_RDFT); } #endif