/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Tue Sep 14 10:47:21 EDT 2021 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_r2r.native -fma -compact -variables 4 -pipeline-latency 4 -redft01 -n 8 -name e01_8 -include rdft/scalar/r2r.h */ /* * This function contains 26 FP additions, 24 FP multiplications, * (or, 2 additions, 0 multiplications, 24 fused multiply/add), * 27 stack variables, 8 constants, and 16 memory accesses */ #include "rdft/scalar/r2r.h" static void e01_8(const R *I, R *O, stride is, stride os, INT v, INT ivs, INT ovs) { DK(KP1_662939224, +1.662939224605090474157576755235811513477121624); DK(KP668178637, +0.668178637919298919997757686523080761552472251); DK(KP1_961570560, +1.961570560806460898252364472268478073947867462); DK(KP198912367, +0.198912367379658006911597622644676228597850501); DK(KP1_847759065, +1.847759065022573512256366378793576573644833252); DK(KP707106781, +0.707106781186547524400844362104849039284835938); DK(KP414213562, +0.414213562373095048801688724209698078569671875); DK(KP1_414213562, +1.414213562373095048801688724209698078569671875); { INT i; for (i = v; i > 0; i = i - 1, I = I + ivs, O = O + ovs, MAKE_VOLATILE_STRIDE(16, is), MAKE_VOLATILE_STRIDE(16, os)) { E T3, Tj, T6, Tk, Tc, Tn, Tf, Tm; { E T1, T2, T4, T5; T1 = I[0]; T2 = I[WS(is, 4)]; T3 = FMA(KP1_414213562, T2, T1); Tj = FNMS(KP1_414213562, T2, T1); T4 = I[WS(is, 2)]; T5 = I[WS(is, 6)]; T6 = FMA(KP414213562, T5, T4); Tk = FMS(KP414213562, T4, T5); { E T8, Td, Tb, Te, T9, Ta; T8 = I[WS(is, 1)]; Td = I[WS(is, 7)]; T9 = I[WS(is, 5)]; Ta = I[WS(is, 3)]; Tb = T9 + Ta; Te = Ta - T9; Tc = FMA(KP707106781, Tb, T8); Tn = FNMS(KP707106781, Te, Td); Tf = FMA(KP707106781, Te, Td); Tm = FNMS(KP707106781, Tb, T8); } } { E T7, Tg, Tp, Tq; T7 = FMA(KP1_847759065, T6, T3); Tg = FMA(KP198912367, Tf, Tc); O[WS(os, 7)] = FNMS(KP1_961570560, Tg, T7); O[0] = FMA(KP1_961570560, Tg, T7); Tp = FNMS(KP1_847759065, Tk, Tj); Tq = FMA(KP668178637, Tm, Tn); O[WS(os, 5)] = FNMS(KP1_662939224, Tq, Tp); O[WS(os, 2)] = FMA(KP1_662939224, Tq, Tp); } { E Th, Ti, Tl, To; Th = FNMS(KP1_847759065, T6, T3); Ti = FNMS(KP198912367, Tc, Tf); O[WS(os, 3)] = FNMS(KP1_961570560, Ti, Th); O[WS(os, 4)] = FMA(KP1_961570560, Ti, Th); Tl = FMA(KP1_847759065, Tk, Tj); To = FNMS(KP668178637, Tn, Tm); O[WS(os, 6)] = FNMS(KP1_662939224, To, Tl); O[WS(os, 1)] = FMA(KP1_662939224, To, Tl); } } } } static const kr2r_desc desc = { 8, "e01_8", { 2, 0, 24, 0 }, &GENUS, REDFT01 }; void X(codelet_e01_8) (planner *p) { X(kr2r_register) (p, e01_8, &desc); } #else /* Generated by: ../../../genfft/gen_r2r.native -compact -variables 4 -pipeline-latency 4 -redft01 -n 8 -name e01_8 -include rdft/scalar/r2r.h */ /* * This function contains 26 FP additions, 15 FP multiplications, * (or, 20 additions, 9 multiplications, 6 fused multiply/add), * 28 stack variables, 8 constants, and 16 memory accesses */ #include "rdft/scalar/r2r.h" static void e01_8(const R *I, R *O, stride is, stride os, INT v, INT ivs, INT ovs) { DK(KP1_662939224, +1.662939224605090474157576755235811513477121624); DK(KP1_111140466, +1.111140466039204449485661627897065748749874382); DK(KP390180644, +0.390180644032256535696569736954044481855383236); DK(KP1_961570560, +1.961570560806460898252364472268478073947867462); DK(KP707106781, +0.707106781186547524400844362104849039284835938); DK(KP1_414213562, +1.414213562373095048801688724209698078569671875); DK(KP765366864, +0.765366864730179543456919968060797733522689125); DK(KP1_847759065, +1.847759065022573512256366378793576573644833252); { INT i; for (i = v; i > 0; i = i - 1, I = I + ivs, O = O + ovs, MAKE_VOLATILE_STRIDE(16, is), MAKE_VOLATILE_STRIDE(16, os)) { E T7, Tl, T4, Tk, Td, To, Tg, Tn; { E T5, T6, T1, T3, T2; T5 = I[WS(is, 2)]; T6 = I[WS(is, 6)]; T7 = FMA(KP1_847759065, T5, KP765366864 * T6); Tl = FNMS(KP1_847759065, T6, KP765366864 * T5); T1 = I[0]; T2 = I[WS(is, 4)]; T3 = KP1_414213562 * T2; T4 = T1 + T3; Tk = T1 - T3; { E T9, Tf, Tc, Te, Ta, Tb; T9 = I[WS(is, 1)]; Tf = I[WS(is, 7)]; Ta = I[WS(is, 5)]; Tb = I[WS(is, 3)]; Tc = KP707106781 * (Ta + Tb); Te = KP707106781 * (Ta - Tb); Td = T9 + Tc; To = Te + Tf; Tg = Te - Tf; Tn = T9 - Tc; } } { E T8, Th, Tq, Tr; T8 = T4 + T7; Th = FNMS(KP390180644, Tg, KP1_961570560 * Td); O[WS(os, 7)] = T8 - Th; O[0] = T8 + Th; Tq = Tk - Tl; Tr = FMA(KP1_111140466, Tn, KP1_662939224 * To); O[WS(os, 5)] = Tq - Tr; O[WS(os, 2)] = Tq + Tr; } { E Ti, Tj, Tm, Tp; Ti = T4 - T7; Tj = FMA(KP390180644, Td, KP1_961570560 * Tg); O[WS(os, 4)] = Ti - Tj; O[WS(os, 3)] = Ti + Tj; Tm = Tk + Tl; Tp = FNMS(KP1_111140466, To, KP1_662939224 * Tn); O[WS(os, 6)] = Tm - Tp; O[WS(os, 1)] = Tm + Tp; } } } } static const kr2r_desc desc = { 8, "e01_8", { 20, 9, 6, 0 }, &GENUS, REDFT01 }; void X(codelet_e01_8) (planner *p) { X(kr2r_register) (p, e01_8, &desc); } #endif