/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Tue Sep 14 10:46:24 EDT 2021 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 10 -name r2cfII_10 -dft-II -include rdft/scalar/r2cfII.h */ /* * This function contains 32 FP additions, 18 FP multiplications, * (or, 14 additions, 0 multiplications, 18 fused multiply/add), * 21 stack variables, 4 constants, and 20 memory accesses */ #include "rdft/scalar/r2cfII.h" static void r2cfII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP618033988, +0.618033988749894848204586834365638117720309180); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) { E T1, To, T8, Tt, Ta, Ts, Te, Tq, Th, Tn; T1 = R0[0]; To = R1[WS(rs, 2)]; { E T2, T3, T4, T5, T6, T7; T2 = R0[WS(rs, 2)]; T3 = R0[WS(rs, 3)]; T4 = T2 - T3; T5 = R0[WS(rs, 4)]; T6 = R0[WS(rs, 1)]; T7 = T5 - T6; T8 = T4 + T7; Tt = T5 + T6; Ta = T4 - T7; Ts = T2 + T3; } { E Tc, Td, Tm, Tf, Tg, Tl; Tc = R1[0]; Td = R1[WS(rs, 4)]; Tm = Tc + Td; Tf = R1[WS(rs, 1)]; Tg = R1[WS(rs, 3)]; Tl = Tf + Tg; Te = Tc - Td; Tq = Tm + Tl; Th = Tf - Tg; Tn = Tl - Tm; } Cr[WS(csr, 2)] = T1 + T8; Ci[WS(csi, 2)] = Tn - To; { E Ti, Tk, Tb, Tj, T9; Ti = FMA(KP618033988, Th, Te); Tk = FNMS(KP618033988, Te, Th); T9 = FNMS(KP250000000, T8, T1); Tb = FMA(KP559016994, Ta, T9); Tj = FNMS(KP559016994, Ta, T9); Cr[WS(csr, 4)] = FNMS(KP951056516, Ti, Tb); Cr[WS(csr, 3)] = FMA(KP951056516, Tk, Tj); Cr[0] = FMA(KP951056516, Ti, Tb); Cr[WS(csr, 1)] = FNMS(KP951056516, Tk, Tj); } { E Tu, Tw, Tr, Tv, Tp; Tu = FMA(KP618033988, Tt, Ts); Tw = FNMS(KP618033988, Ts, Tt); Tp = FMA(KP250000000, Tn, To); Tr = FMA(KP559016994, Tq, Tp); Tv = FNMS(KP559016994, Tq, Tp); Ci[0] = -(FMA(KP951056516, Tu, Tr)); Ci[WS(csi, 3)] = FMA(KP951056516, Tw, Tv); Ci[WS(csi, 4)] = FMS(KP951056516, Tu, Tr); Ci[WS(csi, 1)] = FNMS(KP951056516, Tw, Tv); } } } } static const kr2c_desc desc = { 10, "r2cfII_10", { 14, 0, 18, 0 }, &GENUS }; void X(codelet_r2cfII_10) (planner *p) { X(kr2c_register) (p, r2cfII_10, &desc); } #else /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 10 -name r2cfII_10 -dft-II -include rdft/scalar/r2cfII.h */ /* * This function contains 32 FP additions, 12 FP multiplications, * (or, 26 additions, 6 multiplications, 6 fused multiply/add), * 21 stack variables, 4 constants, and 20 memory accesses */ #include "rdft/scalar/r2cfII.h" static void r2cfII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP587785252, +0.587785252292473129168705954639072768597652438); DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP559016994, +0.559016994374947424102293417182819058860154590); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) { E T1, To, T8, Tq, T9, Tp, Te, Ts, Th, Tn; T1 = R0[0]; To = R1[WS(rs, 2)]; { E T2, T3, T4, T5, T6, T7; T2 = R0[WS(rs, 2)]; T3 = R0[WS(rs, 3)]; T4 = T2 - T3; T5 = R0[WS(rs, 4)]; T6 = R0[WS(rs, 1)]; T7 = T5 - T6; T8 = T4 + T7; Tq = T5 + T6; T9 = KP559016994 * (T4 - T7); Tp = T2 + T3; } { E Tc, Td, Tm, Tf, Tg, Tl; Tc = R1[0]; Td = R1[WS(rs, 4)]; Tm = Tc + Td; Tf = R1[WS(rs, 1)]; Tg = R1[WS(rs, 3)]; Tl = Tf + Tg; Te = Tc - Td; Ts = KP559016994 * (Tm + Tl); Th = Tf - Tg; Tn = Tl - Tm; } Cr[WS(csr, 2)] = T1 + T8; Ci[WS(csi, 2)] = Tn - To; { E Ti, Tk, Tb, Tj, Ta; Ti = FMA(KP951056516, Te, KP587785252 * Th); Tk = FNMS(KP587785252, Te, KP951056516 * Th); Ta = FNMS(KP250000000, T8, T1); Tb = T9 + Ta; Tj = Ta - T9; Cr[WS(csr, 4)] = Tb - Ti; Cr[WS(csr, 3)] = Tj + Tk; Cr[0] = Tb + Ti; Cr[WS(csr, 1)] = Tj - Tk; } { E Tr, Tw, Tu, Tv, Tt; Tr = FMA(KP951056516, Tp, KP587785252 * Tq); Tw = FNMS(KP587785252, Tp, KP951056516 * Tq); Tt = FMA(KP250000000, Tn, To); Tu = Ts + Tt; Tv = Tt - Ts; Ci[0] = -(Tr + Tu); Ci[WS(csi, 3)] = Tw + Tv; Ci[WS(csi, 4)] = Tr - Tu; Ci[WS(csi, 1)] = Tv - Tw; } } } } static const kr2c_desc desc = { 10, "r2cfII_10", { 26, 6, 6, 0 }, &GENUS }; void X(codelet_r2cfII_10) (planner *p) { X(kr2c_register) (p, r2cfII_10, &desc); } #endif