/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Tue Sep 14 10:46:13 EDT 2021 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -n 9 -dit -name hf_9 -include rdft/scalar/hf.h */ /* * This function contains 96 FP additions, 88 FP multiplications, * (or, 24 additions, 16 multiplications, 72 fused multiply/add), * 55 stack variables, 10 constants, and 36 memory accesses */ #include "rdft/scalar/hf.h" static void hf_9(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP852868531, +0.852868531952443209628250963940074071936020296); DK(KP492403876, +0.492403876506104029683371512294761506835321626); DK(KP984807753, +0.984807753012208059366743024589523013670643252); DK(KP777861913, +0.777861913430206160028177977318626690410586096); DK(KP839099631, +0.839099631177280011763127298123181364687434283); DK(KP954188894, +0.954188894138671133499268364187245676532219158); DK(KP363970234, +0.363970234266202361351047882776834043890471784); DK(KP176326980, +0.176326980708464973471090386868618986121633062); DK(KP866025403, +0.866025403784438646763723170752936183471402627); DK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + ((mb - 1) * 16); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) { E T1, T1P, Te, T1S, T10, T1Q, T1a, T1d, Ty, T18, Tl, T13, T19, T1c, T1l; E T1r, TS, T1p, TF, T1o, T1g, T1q; T1 = cr[0]; T1P = ci[0]; { E T3, T6, T4, TW, T9, Tc, Ta, TY, T2, T8; T3 = cr[WS(rs, 3)]; T6 = ci[WS(rs, 3)]; T2 = W[4]; T4 = T2 * T3; TW = T2 * T6; T9 = cr[WS(rs, 6)]; Tc = ci[WS(rs, 6)]; T8 = W[10]; Ta = T8 * T9; TY = T8 * Tc; { E T7, TX, Td, TZ, T5, Tb; T5 = W[5]; T7 = FMA(T5, T6, T4); TX = FNMS(T5, T3, TW); Tb = W[11]; Td = FMA(Tb, Tc, Ta); TZ = FNMS(Tb, T9, TY); Te = T7 + Td; T1S = Td - T7; T10 = TX - TZ; T1Q = TX + TZ; } } { E Th, Tk, Ti, T12, Tx, T17, Tr, T15, Tg, Tj; Th = cr[WS(rs, 1)]; Tk = ci[WS(rs, 1)]; Tg = W[0]; Ti = Tg * Th; T12 = Tg * Tk; { E Tt, Tw, Tu, T16, Ts, Tv; Tt = cr[WS(rs, 7)]; Tw = ci[WS(rs, 7)]; Ts = W[12]; Tu = Ts * Tt; T16 = Ts * Tw; Tv = W[13]; Tx = FMA(Tv, Tw, Tu); T17 = FNMS(Tv, Tt, T16); } { E Tn, Tq, To, T14, Tm, Tp; Tn = cr[WS(rs, 4)]; Tq = ci[WS(rs, 4)]; Tm = W[6]; To = Tm * Tn; T14 = Tm * Tq; Tp = W[7]; Tr = FMA(Tp, Tq, To); T15 = FNMS(Tp, Tn, T14); } T1a = Tr - Tx; T1d = T15 - T17; Ty = Tr + Tx; T18 = T15 + T17; Tj = W[1]; Tl = FMA(Tj, Tk, Ti); T13 = FNMS(Tj, Th, T12); T19 = FNMS(KP500000000, T18, T13); T1c = FNMS(KP500000000, Ty, Tl); } { E TB, TE, TC, T1n, TR, T1k, TL, T1i, TA, TD; TB = cr[WS(rs, 2)]; TE = ci[WS(rs, 2)]; TA = W[2]; TC = TA * TB; T1n = TA * TE; { E TN, TQ, TO, T1j, TM, TP; TN = cr[WS(rs, 8)]; TQ = ci[WS(rs, 8)]; TM = W[14]; TO = TM * TN; T1j = TM * TQ; TP = W[15]; TR = FMA(TP, TQ, TO); T1k = FNMS(TP, TN, T1j); } { E TH, TK, TI, T1h, TG, TJ; TH = cr[WS(rs, 5)]; TK = ci[WS(rs, 5)]; TG = W[8]; TI = TG * TH; T1h = TG * TK; TJ = W[9]; TL = FMA(TJ, TK, TI); T1i = FNMS(TJ, TH, T1h); } T1l = T1i - T1k; T1r = TR - TL; TS = TL + TR; T1p = T1i + T1k; TD = W[3]; TF = FMA(TD, TE, TC); T1o = FNMS(TD, TB, T1n); T1g = FNMS(KP500000000, TS, TF); T1q = FNMS(KP500000000, T1p, T1o); } { E Tf, T21, TU, T24, T1O, T22, T1L, T23; Tf = T1 + Te; T21 = T1Q + T1P; { E Tz, TT, T1M, T1N; Tz = Tl + Ty; TT = TF + TS; TU = Tz + TT; T24 = TT - Tz; T1M = T13 + T18; T1N = T1o + T1p; T1O = T1M - T1N; T22 = T1M + T1N; } cr[0] = Tf + TU; ci[WS(rs, 8)] = T22 + T21; T1L = FNMS(KP500000000, TU, Tf); ci[WS(rs, 2)] = FNMS(KP866025403, T1O, T1L); cr[WS(rs, 3)] = FMA(KP866025403, T1O, T1L); T23 = FNMS(KP500000000, T22, T21); cr[WS(rs, 6)] = FMS(KP866025403, T24, T23); ci[WS(rs, 5)] = FMA(KP866025403, T24, T23); } { E T11, T1z, T1T, T1X, T1f, T1w, T1t, T1x, T1u, T1Y, T1C, T1I, T1F, T1J, T1G; E T1U, TV, T1R; TV = FNMS(KP500000000, Te, T1); T11 = FNMS(KP866025403, T10, TV); T1z = FMA(KP866025403, T10, TV); T1R = FNMS(KP500000000, T1Q, T1P); T1T = FMA(KP866025403, T1S, T1R); T1X = FNMS(KP866025403, T1S, T1R); { E T1b, T1e, T1m, T1s; T1b = FMA(KP866025403, T1a, T19); T1e = FNMS(KP866025403, T1d, T1c); T1f = FMA(KP176326980, T1e, T1b); T1w = FNMS(KP176326980, T1b, T1e); T1m = FNMS(KP866025403, T1l, T1g); T1s = FNMS(KP866025403, T1r, T1q); T1t = FNMS(KP363970234, T1s, T1m); T1x = FMA(KP363970234, T1m, T1s); } T1u = FNMS(KP954188894, T1t, T1f); T1Y = FMA(KP954188894, T1x, T1w); { E T1A, T1B, T1D, T1E; T1A = FMA(KP866025403, T1r, T1q); T1B = FMA(KP866025403, T1l, T1g); T1C = FMA(KP176326980, T1B, T1A); T1I = FNMS(KP176326980, T1A, T1B); T1D = FMA(KP866025403, T1d, T1c); T1E = FNMS(KP866025403, T1a, T19); T1F = FMA(KP839099631, T1E, T1D); T1J = FNMS(KP839099631, T1D, T1E); } T1G = FMA(KP777861913, T1F, T1C); T1U = FNMS(KP777861913, T1J, T1I); cr[WS(rs, 2)] = FMA(KP984807753, T1u, T11); ci[WS(rs, 7)] = FNMS(KP984807753, T1U, T1T); ci[WS(rs, 6)] = FNMS(KP984807753, T1Y, T1X); cr[WS(rs, 1)] = FMA(KP984807753, T1G, T1z); { E T1V, T1W, T1H, T1K; T1V = FMA(KP492403876, T1U, T1T); T1W = FNMS(KP777861913, T1F, T1C); cr[WS(rs, 7)] = FMS(KP852868531, T1W, T1V); ci[WS(rs, 4)] = FMA(KP852868531, T1W, T1V); T1H = FNMS(KP492403876, T1G, T1z); T1K = FMA(KP777861913, T1J, T1I); ci[WS(rs, 1)] = FNMS(KP852868531, T1K, T1H); cr[WS(rs, 4)] = FMA(KP852868531, T1K, T1H); } { E T1v, T1y, T1Z, T20; T1v = FNMS(KP492403876, T1u, T11); T1y = FNMS(KP954188894, T1x, T1w); ci[WS(rs, 3)] = FNMS(KP852868531, T1y, T1v); ci[0] = FMA(KP852868531, T1y, T1v); T1Z = FMA(KP492403876, T1Y, T1X); T20 = FMA(KP954188894, T1t, T1f); cr[WS(rs, 5)] = FMS(KP852868531, T20, T1Z); cr[WS(rs, 8)] = -(FMA(KP852868531, T20, T1Z)); } } } } } static const tw_instr twinstr[] = { { TW_FULL, 1, 9 }, { TW_NEXT, 1, 0 } }; static const hc2hc_desc desc = { 9, "hf_9", twinstr, &GENUS, { 24, 16, 72, 0 } }; void X(codelet_hf_9) (planner *p) { X(khc2hc_register) (p, hf_9, &desc); } #else /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -n 9 -dit -name hf_9 -include rdft/scalar/hf.h */ /* * This function contains 96 FP additions, 72 FP multiplications, * (or, 60 additions, 36 multiplications, 36 fused multiply/add), * 41 stack variables, 8 constants, and 36 memory accesses */ #include "rdft/scalar/hf.h" static void hf_9(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP642787609, +0.642787609686539326322643409907263432907559884); DK(KP766044443, +0.766044443118978035202392650555416673935832457); DK(KP939692620, +0.939692620785908384054109277324731469936208134); DK(KP342020143, +0.342020143325668733044099614682259580763083368); DK(KP984807753, +0.984807753012208059366743024589523013670643252); DK(KP173648177, +0.173648177666930348851716626769314796000375677); DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP866025403, +0.866025403784438646763723170752936183471402627); { INT m; for (m = mb, W = W + ((mb - 1) * 16); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) { E T1, T1B, TQ, T1A, Tc, TN, T1C, T1D, TL, T1x, T19, T1o, T1c, T1n, Tu; E T1w, TW, T1k, T11, T1l; { E T6, TO, Tb, TP; T1 = cr[0]; T1B = ci[0]; { E T3, T5, T2, T4; T3 = cr[WS(rs, 3)]; T5 = ci[WS(rs, 3)]; T2 = W[4]; T4 = W[5]; T6 = FMA(T2, T3, T4 * T5); TO = FNMS(T4, T3, T2 * T5); } { E T8, Ta, T7, T9; T8 = cr[WS(rs, 6)]; Ta = ci[WS(rs, 6)]; T7 = W[10]; T9 = W[11]; Tb = FMA(T7, T8, T9 * Ta); TP = FNMS(T9, T8, T7 * Ta); } TQ = KP866025403 * (TO - TP); T1A = KP866025403 * (Tb - T6); Tc = T6 + Tb; TN = FNMS(KP500000000, Tc, T1); T1C = TO + TP; T1D = FNMS(KP500000000, T1C, T1B); } { E Tz, T13, TE, T14, TJ, T15, TK, T16; { E Tw, Ty, Tv, Tx; Tw = cr[WS(rs, 2)]; Ty = ci[WS(rs, 2)]; Tv = W[2]; Tx = W[3]; Tz = FMA(Tv, Tw, Tx * Ty); T13 = FNMS(Tx, Tw, Tv * Ty); } { E TB, TD, TA, TC; TB = cr[WS(rs, 5)]; TD = ci[WS(rs, 5)]; TA = W[8]; TC = W[9]; TE = FMA(TA, TB, TC * TD); T14 = FNMS(TC, TB, TA * TD); } { E TG, TI, TF, TH; TG = cr[WS(rs, 8)]; TI = ci[WS(rs, 8)]; TF = W[14]; TH = W[15]; TJ = FMA(TF, TG, TH * TI); T15 = FNMS(TH, TG, TF * TI); } TK = TE + TJ; T16 = T14 + T15; TL = Tz + TK; T1x = T13 + T16; { E T17, T18, T1a, T1b; T17 = FNMS(KP500000000, T16, T13); T18 = KP866025403 * (TJ - TE); T19 = T17 - T18; T1o = T18 + T17; T1a = FNMS(KP500000000, TK, Tz); T1b = KP866025403 * (T14 - T15); T1c = T1a - T1b; T1n = T1a + T1b; } } { E Ti, TX, Tn, TT, Ts, TU, Tt, TY; { E Tf, Th, Te, Tg; Tf = cr[WS(rs, 1)]; Th = ci[WS(rs, 1)]; Te = W[0]; Tg = W[1]; Ti = FMA(Te, Tf, Tg * Th); TX = FNMS(Tg, Tf, Te * Th); } { E Tk, Tm, Tj, Tl; Tk = cr[WS(rs, 4)]; Tm = ci[WS(rs, 4)]; Tj = W[6]; Tl = W[7]; Tn = FMA(Tj, Tk, Tl * Tm); TT = FNMS(Tl, Tk, Tj * Tm); } { E Tp, Tr, To, Tq; Tp = cr[WS(rs, 7)]; Tr = ci[WS(rs, 7)]; To = W[12]; Tq = W[13]; Ts = FMA(To, Tp, Tq * Tr); TU = FNMS(Tq, Tp, To * Tr); } Tt = Tn + Ts; TY = TT + TU; Tu = Ti + Tt; T1w = TX + TY; { E TS, TV, TZ, T10; TS = FNMS(KP500000000, Tt, Ti); TV = KP866025403 * (TT - TU); TW = TS - TV; T1k = TS + TV; TZ = FNMS(KP500000000, TY, TX); T10 = KP866025403 * (Ts - Tn); T11 = TZ - T10; T1l = T10 + TZ; } } { E T1y, Td, TM, T1v; T1y = KP866025403 * (T1w - T1x); Td = T1 + Tc; TM = Tu + TL; T1v = FNMS(KP500000000, TM, Td); cr[0] = Td + TM; cr[WS(rs, 3)] = T1v + T1y; ci[WS(rs, 2)] = T1v - T1y; } { E TR, T1I, T1e, T1K, T1i, T1H, T1f, T1J; TR = TN - TQ; T1I = T1D - T1A; { E T12, T1d, T1g, T1h; T12 = FMA(KP173648177, TW, KP984807753 * T11); T1d = FNMS(KP939692620, T1c, KP342020143 * T19); T1e = T12 + T1d; T1K = KP866025403 * (T1d - T12); T1g = FNMS(KP984807753, TW, KP173648177 * T11); T1h = FMA(KP342020143, T1c, KP939692620 * T19); T1i = KP866025403 * (T1g + T1h); T1H = T1g - T1h; } cr[WS(rs, 2)] = TR + T1e; ci[WS(rs, 6)] = T1H + T1I; T1f = FNMS(KP500000000, T1e, TR); ci[0] = T1f - T1i; ci[WS(rs, 3)] = T1f + T1i; T1J = FMS(KP500000000, T1H, T1I); cr[WS(rs, 5)] = T1J - T1K; cr[WS(rs, 8)] = T1K + T1J; } { E T1L, T1M, T1N, T1O; T1L = KP866025403 * (TL - Tu); T1M = T1C + T1B; T1N = T1w + T1x; T1O = FNMS(KP500000000, T1N, T1M); cr[WS(rs, 6)] = T1L - T1O; ci[WS(rs, 8)] = T1N + T1M; ci[WS(rs, 5)] = T1L + T1O; } { E T1j, T1E, T1q, T1z, T1u, T1F, T1r, T1G; T1j = TN + TQ; T1E = T1A + T1D; { E T1m, T1p, T1s, T1t; T1m = FMA(KP766044443, T1k, KP642787609 * T1l); T1p = FMA(KP173648177, T1n, KP984807753 * T1o); T1q = T1m + T1p; T1z = KP866025403 * (T1p - T1m); T1s = FNMS(KP642787609, T1k, KP766044443 * T1l); T1t = FNMS(KP984807753, T1n, KP173648177 * T1o); T1u = KP866025403 * (T1s - T1t); T1F = T1s + T1t; } cr[WS(rs, 1)] = T1j + T1q; T1r = FNMS(KP500000000, T1q, T1j); ci[WS(rs, 1)] = T1r - T1u; cr[WS(rs, 4)] = T1r + T1u; ci[WS(rs, 7)] = T1F + T1E; T1G = FNMS(KP500000000, T1F, T1E); cr[WS(rs, 7)] = T1z - T1G; ci[WS(rs, 4)] = T1z + T1G; } } } } static const tw_instr twinstr[] = { { TW_FULL, 1, 9 }, { TW_NEXT, 1, 0 } }; static const hc2hc_desc desc = { 9, "hf_9", twinstr, &GENUS, { 60, 36, 36, 0 } }; void X(codelet_hf_9) (planner *p) { X(khc2hc_register) (p, hf_9, &desc); } #endif