/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Tue Sep 14 10:46:37 EDT 2021 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 12 -dit -name hc2cfdft_12 -include rdft/scalar/hc2cf.h */ /* * This function contains 142 FP additions, 92 FP multiplications, * (or, 96 additions, 46 multiplications, 46 fused multiply/add), * 65 stack variables, 2 constants, and 48 memory accesses */ #include "rdft/scalar/hc2cf.h" static void hc2cfdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP866025403, +0.866025403784438646763723170752936183471402627); DK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) { E To, T1E, T1m, T2H, Ta, T1G, Tk, T1I, Tl, T1J, T1s, T2b, T1A, T2d, T1B; E T2I, T12, T18, T19, T24, T26, T2C, Tz, T1M, T1f, T2B, TJ, T1O, TT, T1Q; E TU, T1R; { E Tm, Tn, T1u, T1x, T1y, T1z, T1v, T2c, Te, Tj, T1i, T1l, Tf, T1H, T4; E T1o, T9, T1r, T5, T1F, T1p, T2a, T1t, T1, T1n; Tm = Ip[0]; Tn = Im[0]; T1u = Tm + Tn; T1x = Rp[0]; T1y = Rm[0]; T1z = T1x - T1y; T1t = W[0]; T1v = T1t * T1u; T2c = T1t * T1z; { E Tc, Td, Th, Ti, Tb; Tc = Ip[WS(rs, 4)]; Td = Im[WS(rs, 4)]; Te = Tc - Td; Th = Rp[WS(rs, 4)]; Ti = Rm[WS(rs, 4)]; Tj = Th + Ti; T1i = Tc + Td; T1l = Th - Ti; Tb = W[14]; Tf = Tb * Te; T1H = Tb * Tj; } { E T2, T3, T7, T8; T2 = Ip[WS(rs, 2)]; T3 = Im[WS(rs, 2)]; T4 = T2 - T3; T1o = T2 + T3; T7 = Rp[WS(rs, 2)]; T8 = Rm[WS(rs, 2)]; T9 = T7 + T8; T1r = T7 - T8; } T1 = W[6]; T5 = T1 * T4; T1F = T1 * T9; T1n = W[8]; T1p = T1n * T1o; T2a = T1n * T1r; To = Tm - Tn; T1E = T1x + T1y; { E T1j, T2G, T1h, T1k; T1h = W[16]; T1j = T1h * T1i; T2G = T1h * T1l; T1k = W[17]; T1m = FNMS(T1k, T1l, T1j); T2H = FMA(T1k, T1i, T2G); } { E T6, Tg, T1q, T1w; T6 = W[7]; Ta = FNMS(T6, T9, T5); T1G = FMA(T6, T4, T1F); Tg = W[15]; Tk = FNMS(Tg, Tj, Tf); T1I = FMA(Tg, Te, T1H); Tl = Ta + Tk; T1J = T1G + T1I; T1q = W[9]; T1s = FNMS(T1q, T1r, T1p); T2b = FMA(T1q, T1o, T2a); T1w = W[1]; T1A = FNMS(T1w, T1z, T1v); T2d = FMA(T1w, T1u, T2c); T1B = T1s + T1A; T2I = T2b + T2d; } } { E Tt, T11, Ty, T10, T23, TX, TZ, TN, TS, T1b, T1e, TO, T1P, TD, TI; E T17, T16, T25, T13, T15, TE, T1N, TF, TP; { E Tr, Ts, Tw, Tx, TY; Tr = Ip[WS(rs, 3)]; Ts = Im[WS(rs, 3)]; Tt = Tr - Ts; T11 = Tr + Ts; Tw = Rp[WS(rs, 3)]; Tx = Rm[WS(rs, 3)]; TY = Tx - Tw; Ty = Tw + Tx; T10 = W[12]; T23 = T10 * TY; TX = W[13]; TZ = TX * TY; } { E TL, TM, TQ, TR, TK; TL = Ip[WS(rs, 1)]; TM = Im[WS(rs, 1)]; TN = TL - TM; TQ = Rp[WS(rs, 1)]; TR = Rm[WS(rs, 1)]; TS = TQ + TR; T1b = TL + TM; T1e = TQ - TR; TK = W[2]; TO = TK * TN; T1P = TK * TS; } { E TB, TC, T14, TG, TH, TA; TB = Ip[WS(rs, 5)]; TC = Im[WS(rs, 5)]; TD = TB - TC; TG = Rp[WS(rs, 5)]; TH = Rm[WS(rs, 5)]; TI = TG + TH; T14 = TH - TG; T17 = TB + TC; T16 = W[20]; T25 = T16 * T14; T13 = W[21]; T15 = T13 * T14; TA = W[18]; TE = TA * TD; T1N = TA * TI; } T12 = FMA(T10, T11, TZ); T18 = FMA(T16, T17, T15); T19 = T12 + T18; T24 = FNMS(TX, T11, T23); T26 = FNMS(T13, T17, T25); T2C = T24 + T26; { E Tu, T1L, Tq, Tv; Tq = W[10]; Tu = Tq * Tt; T1L = Tq * Ty; Tv = W[11]; Tz = FNMS(Tv, Ty, Tu); T1M = FMA(Tv, Tt, T1L); } { E T1c, T2A, T1a, T1d; T1a = W[4]; T1c = T1a * T1b; T2A = T1a * T1e; T1d = W[5]; T1f = FNMS(T1d, T1e, T1c); T2B = FMA(T1d, T1b, T2A); } TF = W[19]; TJ = FNMS(TF, TI, TE); T1O = FMA(TF, TD, T1N); TP = W[3]; TT = FNMS(TP, TS, TO); T1Q = FMA(TP, TN, T1P); TU = TJ + TT; T1R = T1O + T1Q; } { E TW, T2V, T2Y, T30, T1D, T1U, T1T, T2Z; { E Tp, TV, T2W, T2X; Tp = Tl + To; TV = Tz + TU; TW = Tp - TV; T2V = TV + Tp; T2W = T2C - T2B; T2X = T2H + T2I; T2Y = T2W - T2X; T30 = T2W + T2X; } { E T1g, T1C, T1K, T1S; T1g = T19 + T1f; T1C = T1m + T1B; T1D = T1g - T1C; T1U = T1g + T1C; T1K = T1E + T1J; T1S = T1M + T1R; T1T = T1K + T1S; T2Z = T1K - T1S; } Ip[WS(rs, 3)] = KP500000000 * (TW + T1D); Rp[WS(rs, 3)] = KP500000000 * (T2Z - T30); Im[WS(rs, 2)] = KP500000000 * (T1D - TW); Rm[WS(rs, 2)] = KP500000000 * (T2Z + T30); Rm[WS(rs, 5)] = KP500000000 * (T1T - T1U); Im[WS(rs, 5)] = KP500000000 * (T2Y - T2V); Rp[0] = KP500000000 * (T1T + T1U); Ip[0] = KP500000000 * (T2V + T2Y); } { E T1X, T2v, T2F, T2Q, T2L, T2R, T20, T2w, T28, T2t, T2j, T2p, T2m, T2q, T2f; E T2s; { E T1V, T1W, T2D, T2E; T1V = FNMS(KP500000000, T1J, T1E); T1W = Ta - Tk; T1X = FNMS(KP866025403, T1W, T1V); T2v = FMA(KP866025403, T1W, T1V); T2D = FMA(KP500000000, T2C, T2B); T2E = T18 - T12; T2F = FNMS(KP866025403, T2E, T2D); T2Q = FMA(KP866025403, T2E, T2D); } { E T2J, T2K, T1Y, T1Z; T2J = FNMS(KP500000000, T2I, T2H); T2K = T1s - T1A; T2L = FNMS(KP866025403, T2K, T2J); T2R = FMA(KP866025403, T2K, T2J); T1Y = FNMS(KP500000000, T1R, T1M); T1Z = TJ - TT; T20 = FNMS(KP866025403, T1Z, T1Y); T2w = FMA(KP866025403, T1Z, T1Y); } { E T22, T27, T2h, T2i; T22 = FNMS(KP500000000, T19, T1f); T27 = T24 - T26; T28 = FNMS(KP866025403, T27, T22); T2t = FMA(KP866025403, T27, T22); T2h = FNMS(KP500000000, Tl, To); T2i = T1I - T1G; T2j = FNMS(KP866025403, T2i, T2h); T2p = FMA(KP866025403, T2i, T2h); } { E T2k, T2l, T29, T2e; T2k = FNMS(KP500000000, TU, Tz); T2l = T1Q - T1O; T2m = FNMS(KP866025403, T2l, T2k); T2q = FMA(KP866025403, T2l, T2k); T29 = FNMS(KP500000000, T1B, T1m); T2e = T2b - T2d; T2f = FNMS(KP866025403, T2e, T29); T2s = FMA(KP866025403, T2e, T29); } { E T21, T2g, T2P, T2S; T21 = T1X + T20; T2g = T28 + T2f; Rp[WS(rs, 2)] = KP500000000 * (T21 - T2g); Rm[WS(rs, 3)] = KP500000000 * (T21 + T2g); T2P = T2m + T2j; T2S = T2Q + T2R; Ip[WS(rs, 2)] = KP500000000 * (T2P + T2S); Im[WS(rs, 3)] = KP500000000 * (T2S - T2P); } { E T2n, T2o, T2T, T2U; T2n = T2j - T2m; T2o = T2f - T28; Ip[WS(rs, 5)] = KP500000000 * (T2n + T2o); Im[0] = KP500000000 * (T2o - T2n); T2T = T1X - T20; T2U = T2R - T2Q; Rm[0] = KP500000000 * (T2T - T2U); Rp[WS(rs, 5)] = KP500000000 * (T2T + T2U); } { E T2r, T2u, T2N, T2O; T2r = T2p - T2q; T2u = T2s - T2t; Ip[WS(rs, 1)] = KP500000000 * (T2r + T2u); Im[WS(rs, 4)] = KP500000000 * (T2u - T2r); T2N = T2v - T2w; T2O = T2L - T2F; Rm[WS(rs, 4)] = KP500000000 * (T2N - T2O); Rp[WS(rs, 1)] = KP500000000 * (T2N + T2O); } { E T2x, T2y, T2z, T2M; T2x = T2v + T2w; T2y = T2t + T2s; Rm[WS(rs, 1)] = KP500000000 * (T2x - T2y); Rp[WS(rs, 4)] = KP500000000 * (T2x + T2y); T2z = T2q + T2p; T2M = T2F + T2L; Ip[WS(rs, 4)] = KP500000000 * (T2z - T2M); Im[WS(rs, 1)] = -(KP500000000 * (T2z + T2M)); } } } } } static const tw_instr twinstr[] = { { TW_FULL, 1, 12 }, { TW_NEXT, 1, 0 } }; static const hc2c_desc desc = { 12, "hc2cfdft_12", twinstr, &GENUS, { 96, 46, 46, 0 } }; void X(codelet_hc2cfdft_12) (planner *p) { X(khc2c_register) (p, hc2cfdft_12, &desc, HC2C_VIA_DFT); } #else /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 12 -dit -name hc2cfdft_12 -include rdft/scalar/hc2cf.h */ /* * This function contains 142 FP additions, 76 FP multiplications, * (or, 112 additions, 46 multiplications, 30 fused multiply/add), * 52 stack variables, 3 constants, and 48 memory accesses */ #include "rdft/scalar/hc2cf.h" static void hc2cfdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP433012701, +0.433012701892219323381861585376468091735701313); { INT m; for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) { E Tm, T1t, T1d, T2j, Tj, T1Y, T1w, T1G, T1q, T2q, T1U, T2k, Tw, T1y, T17; E T2g, TP, T21, T1B, T1J, T12, T2u, T1P, T2h; { E Tk, Tl, T1k, T1m, T1n, T1o, T4, T1f, T8, T1h, Th, T1c, Td, T1a, T19; E T1b; { E T2, T3, T6, T7; Tk = Ip[0]; Tl = Im[0]; T1k = Tk + Tl; T1m = Rp[0]; T1n = Rm[0]; T1o = T1m - T1n; T2 = Ip[WS(rs, 2)]; T3 = Im[WS(rs, 2)]; T4 = T2 - T3; T1f = T2 + T3; T6 = Rp[WS(rs, 2)]; T7 = Rm[WS(rs, 2)]; T8 = T6 + T7; T1h = T6 - T7; { E Tf, Tg, Tb, Tc; Tf = Rp[WS(rs, 4)]; Tg = Rm[WS(rs, 4)]; Th = Tf + Tg; T1c = Tf - Tg; Tb = Ip[WS(rs, 4)]; Tc = Im[WS(rs, 4)]; Td = Tb - Tc; T1a = Tb + Tc; } } Tm = Tk - Tl; T1t = T1m + T1n; T19 = W[16]; T1b = W[17]; T1d = FNMS(T1b, T1c, T19 * T1a); T2j = FMA(T19, T1c, T1b * T1a); { E T9, T1u, Ti, T1v; { E T1, T5, Ta, Te; T1 = W[6]; T5 = W[7]; T9 = FNMS(T5, T8, T1 * T4); T1u = FMA(T1, T8, T5 * T4); Ta = W[14]; Te = W[15]; Ti = FNMS(Te, Th, Ta * Td); T1v = FMA(Ta, Th, Te * Td); } Tj = T9 + Ti; T1Y = KP433012701 * (T1v - T1u); T1w = T1u + T1v; T1G = KP433012701 * (T9 - Ti); } { E T1i, T1S, T1p, T1T; { E T1e, T1g, T1j, T1l; T1e = W[8]; T1g = W[9]; T1i = FNMS(T1g, T1h, T1e * T1f); T1S = FMA(T1e, T1h, T1g * T1f); T1j = W[0]; T1l = W[1]; T1p = FNMS(T1l, T1o, T1j * T1k); T1T = FMA(T1j, T1o, T1l * T1k); } T1q = T1i + T1p; T2q = KP433012701 * (T1i - T1p); T1U = KP433012701 * (T1S - T1T); T2k = T1S + T1T; } } { E Tr, TT, Tv, TV, TA, TY, TE, T10, TN, T14, TJ, T16; { E Tp, Tq, TC, TD; Tp = Ip[WS(rs, 3)]; Tq = Im[WS(rs, 3)]; Tr = Tp - Tq; TT = Tp + Tq; { E Tt, Tu, Ty, Tz; Tt = Rp[WS(rs, 3)]; Tu = Rm[WS(rs, 3)]; Tv = Tt + Tu; TV = Tt - Tu; Ty = Ip[WS(rs, 5)]; Tz = Im[WS(rs, 5)]; TA = Ty - Tz; TY = Ty + Tz; } TC = Rp[WS(rs, 5)]; TD = Rm[WS(rs, 5)]; TE = TC + TD; T10 = TC - TD; { E TL, TM, TH, TI; TL = Rp[WS(rs, 1)]; TM = Rm[WS(rs, 1)]; TN = TL + TM; T14 = TM - TL; TH = Ip[WS(rs, 1)]; TI = Im[WS(rs, 1)]; TJ = TH - TI; T16 = TH + TI; } } { E To, Ts, T13, T15; To = W[10]; Ts = W[11]; Tw = FNMS(Ts, Tv, To * Tr); T1y = FMA(To, Tv, Ts * Tr); T13 = W[5]; T15 = W[4]; T17 = FMA(T13, T14, T15 * T16); T2g = FNMS(T13, T16, T15 * T14); } { E TF, T1z, TO, T1A; { E Tx, TB, TG, TK; Tx = W[18]; TB = W[19]; TF = FNMS(TB, TE, Tx * TA); T1z = FMA(Tx, TE, TB * TA); TG = W[2]; TK = W[3]; TO = FNMS(TK, TN, TG * TJ); T1A = FMA(TG, TN, TK * TJ); } TP = TF + TO; T21 = KP433012701 * (T1A - T1z); T1B = T1z + T1A; T1J = KP433012701 * (TF - TO); } { E TW, T1O, T11, T1N; { E TS, TU, TX, TZ; TS = W[12]; TU = W[13]; TW = FNMS(TU, TV, TS * TT); T1O = FMA(TS, TV, TU * TT); TX = W[20]; TZ = W[21]; T11 = FNMS(TZ, T10, TX * TY); T1N = FMA(TX, T10, TZ * TY); } T12 = TW + T11; T2u = KP433012701 * (T11 - TW); T1P = KP433012701 * (T1N - T1O); T2h = T1O + T1N; } } { E TR, T2f, T2m, T2o, T1s, T1E, T1D, T2n; { E Tn, TQ, T2i, T2l; Tn = Tj + Tm; TQ = Tw + TP; TR = Tn - TQ; T2f = TQ + Tn; T2i = T2g - T2h; T2l = T2j + T2k; T2m = T2i - T2l; T2o = T2i + T2l; } { E T18, T1r, T1x, T1C; T18 = T12 + T17; T1r = T1d + T1q; T1s = T18 - T1r; T1E = T18 + T1r; T1x = T1t + T1w; T1C = T1y + T1B; T1D = T1x + T1C; T2n = T1x - T1C; } Ip[WS(rs, 3)] = KP500000000 * (TR + T1s); Rp[WS(rs, 3)] = KP500000000 * (T2n - T2o); Im[WS(rs, 2)] = KP500000000 * (T1s - TR); Rm[WS(rs, 2)] = KP500000000 * (T2n + T2o); Rm[WS(rs, 5)] = KP500000000 * (T1D - T1E); Im[WS(rs, 5)] = KP500000000 * (T2m - T2f); Rp[0] = KP500000000 * (T1D + T1E); Ip[0] = KP500000000 * (T2f + T2m); } { E T1H, T2b, T2s, T2B, T2v, T2A, T1K, T2c, T1Q, T29, T1Z, T25, T22, T26, T1V; E T28; { E T1F, T2r, T2t, T1I; T1F = FNMS(KP250000000, T1w, KP500000000 * T1t); T1H = T1F - T1G; T2b = T1F + T1G; T2r = FNMS(KP500000000, T2j, KP250000000 * T2k); T2s = T2q - T2r; T2B = T2q + T2r; T2t = FMA(KP250000000, T2h, KP500000000 * T2g); T2v = T2t - T2u; T2A = T2u + T2t; T1I = FNMS(KP250000000, T1B, KP500000000 * T1y); T1K = T1I - T1J; T2c = T1I + T1J; } { E T1M, T1X, T20, T1R; T1M = FNMS(KP250000000, T12, KP500000000 * T17); T1Q = T1M - T1P; T29 = T1P + T1M; T1X = FNMS(KP250000000, Tj, KP500000000 * Tm); T1Z = T1X - T1Y; T25 = T1Y + T1X; T20 = FNMS(KP250000000, TP, KP500000000 * Tw); T22 = T20 - T21; T26 = T21 + T20; T1R = FNMS(KP250000000, T1q, KP500000000 * T1d); T1V = T1R - T1U; T28 = T1R + T1U; } { E T1L, T1W, T2p, T2w; T1L = T1H + T1K; T1W = T1Q + T1V; Rp[WS(rs, 2)] = T1L - T1W; Rm[WS(rs, 3)] = T1L + T1W; T2p = T22 + T1Z; T2w = T2s - T2v; Ip[WS(rs, 2)] = T2p + T2w; Im[WS(rs, 3)] = T2w - T2p; } { E T23, T24, T2x, T2y; T23 = T1Z - T22; T24 = T1V - T1Q; Ip[WS(rs, 5)] = T23 + T24; Im[0] = T24 - T23; T2x = T1H - T1K; T2y = T2v + T2s; Rm[0] = T2x - T2y; Rp[WS(rs, 5)] = T2x + T2y; } { E T27, T2a, T2z, T2C; T27 = T25 - T26; T2a = T28 - T29; Ip[WS(rs, 1)] = T27 + T2a; Im[WS(rs, 4)] = T2a - T27; T2z = T2b - T2c; T2C = T2A - T2B; Rm[WS(rs, 4)] = T2z - T2C; Rp[WS(rs, 1)] = T2z + T2C; } { E T2d, T2e, T2D, T2E; T2d = T2b + T2c; T2e = T29 + T28; Rm[WS(rs, 1)] = T2d - T2e; Rp[WS(rs, 4)] = T2d + T2e; T2D = T26 + T25; T2E = T2A + T2B; Ip[WS(rs, 4)] = T2D + T2E; Im[WS(rs, 1)] = T2E - T2D; } } } } } static const tw_instr twinstr[] = { { TW_FULL, 1, 12 }, { TW_NEXT, 1, 0 } }; static const hc2c_desc desc = { 12, "hc2cfdft_12", twinstr, &GENUS, { 112, 46, 30, 0 } }; void X(codelet_hc2cfdft_12) (planner *p) { X(khc2c_register) (p, hc2cfdft_12, &desc, HC2C_VIA_DFT); } #endif