/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Tue Sep 14 10:46:31 EDT 2021 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -n 10 -dit -name hc2cf_10 -include rdft/scalar/hc2cf.h */ /* * This function contains 102 FP additions, 72 FP multiplications, * (or, 48 additions, 18 multiplications, 54 fused multiply/add), * 47 stack variables, 4 constants, and 40 memory accesses */ #include "rdft/scalar/hc2cf.h" static void hc2cf_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP618033988, +0.618033988749894848204586834365638117720309180); DK(KP250000000, +0.250000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) { E T8, T26, T12, T1U, TM, TZ, T10, T1I, T1J, T24, T16, T17, T18, T1h, T1m; E T1P, Tl, Ty, Tz, T1F, T1G, T23, T13, T14, T15, T1s, T1x, T1O; { E T1, T1T, T3, T6, T4, T1R, T2, T7, T1S, T5; T1 = Rp[0]; T1T = Rm[0]; T3 = Ip[WS(rs, 2)]; T6 = Im[WS(rs, 2)]; T2 = W[8]; T4 = T2 * T3; T1R = T2 * T6; T5 = W[9]; T7 = FMA(T5, T6, T4); T1S = FNMS(T5, T3, T1R); T8 = T1 - T7; T26 = T1T - T1S; T12 = T1 + T7; T1U = T1S + T1T; } { E TF, T1e, TY, T1l, TL, T1g, TS, T1j; { E TB, TE, TC, T1d, TA, TD; TB = Rp[WS(rs, 2)]; TE = Rm[WS(rs, 2)]; TA = W[6]; TC = TA * TB; T1d = TA * TE; TD = W[7]; TF = FMA(TD, TE, TC); T1e = FNMS(TD, TB, T1d); } { E TU, TX, TV, T1k, TT, TW; TU = Ip[0]; TX = Im[0]; TT = W[0]; TV = TT * TU; T1k = TT * TX; TW = W[1]; TY = FMA(TW, TX, TV); T1l = FNMS(TW, TU, T1k); } { E TH, TK, TI, T1f, TG, TJ; TH = Ip[WS(rs, 4)]; TK = Im[WS(rs, 4)]; TG = W[16]; TI = TG * TH; T1f = TG * TK; TJ = W[17]; TL = FMA(TJ, TK, TI); T1g = FNMS(TJ, TH, T1f); } { E TO, TR, TP, T1i, TN, TQ; TO = Rp[WS(rs, 3)]; TR = Rm[WS(rs, 3)]; TN = W[10]; TP = TN * TO; T1i = TN * TR; TQ = W[11]; TS = FMA(TQ, TR, TP); T1j = FNMS(TQ, TO, T1i); } TM = TF - TL; TZ = TS - TY; T10 = TM + TZ; T1I = T1l - T1j; T1J = T1g - T1e; T24 = T1J + T1I; T16 = TF + TL; T17 = TS + TY; T18 = T16 + T17; T1h = T1e + T1g; T1m = T1j + T1l; T1P = T1h + T1m; } { E Te, T1p, Tx, T1w, Tk, T1r, Tr, T1u; { E Ta, Td, Tb, T1o, T9, Tc; Ta = Rp[WS(rs, 1)]; Td = Rm[WS(rs, 1)]; T9 = W[2]; Tb = T9 * Ta; T1o = T9 * Td; Tc = W[3]; Te = FMA(Tc, Td, Tb); T1p = FNMS(Tc, Ta, T1o); } { E Tt, Tw, Tu, T1v, Ts, Tv; Tt = Ip[WS(rs, 1)]; Tw = Im[WS(rs, 1)]; Ts = W[4]; Tu = Ts * Tt; T1v = Ts * Tw; Tv = W[5]; Tx = FMA(Tv, Tw, Tu); T1w = FNMS(Tv, Tt, T1v); } { E Tg, Tj, Th, T1q, Tf, Ti; Tg = Ip[WS(rs, 3)]; Tj = Im[WS(rs, 3)]; Tf = W[12]; Th = Tf * Tg; T1q = Tf * Tj; Ti = W[13]; Tk = FMA(Ti, Tj, Th); T1r = FNMS(Ti, Tg, T1q); } { E Tn, Tq, To, T1t, Tm, Tp; Tn = Rp[WS(rs, 4)]; Tq = Rm[WS(rs, 4)]; Tm = W[14]; To = Tm * Tn; T1t = Tm * Tq; Tp = W[15]; Tr = FMA(Tp, Tq, To); T1u = FNMS(Tp, Tn, T1t); } Tl = Te - Tk; Ty = Tr - Tx; Tz = Tl + Ty; T1F = T1w - T1u; T1G = T1r - T1p; T23 = T1G + T1F; T13 = Te + Tk; T14 = Tr + Tx; T15 = T13 + T14; T1s = T1p + T1r; T1x = T1u + T1w; T1O = T1s + T1x; } { E T1D, T11, T1C, T1L, T1N, T1H, T1K, T1M, T1E; T1D = Tz - T10; T11 = Tz + T10; T1C = FNMS(KP250000000, T11, T8); T1H = T1F - T1G; T1K = T1I - T1J; T1L = FMA(KP618033988, T1K, T1H); T1N = FNMS(KP618033988, T1H, T1K); Rm[WS(rs, 4)] = T8 + T11; T1M = FNMS(KP559016994, T1D, T1C); Rm[WS(rs, 2)] = FNMS(KP951056516, T1N, T1M); Rp[WS(rs, 3)] = FMA(KP951056516, T1N, T1M); T1E = FMA(KP559016994, T1D, T1C); Rm[0] = FNMS(KP951056516, T1L, T1E); Rp[WS(rs, 1)] = FMA(KP951056516, T1L, T1E); } { E T28, T25, T27, T2c, T2e, T2a, T2b, T2d, T29; T28 = T24 - T23; T25 = T23 + T24; T27 = FMA(KP250000000, T25, T26); T2a = Ty - Tl; T2b = TZ - TM; T2c = FMA(KP618033988, T2b, T2a); T2e = FNMS(KP618033988, T2a, T2b); Im[WS(rs, 4)] = T25 - T26; T2d = FNMS(KP559016994, T28, T27); Im[WS(rs, 2)] = FMS(KP951056516, T2e, T2d); Ip[WS(rs, 3)] = FMA(KP951056516, T2e, T2d); T29 = FMA(KP559016994, T28, T27); Im[0] = FMS(KP951056516, T2c, T29); Ip[WS(rs, 1)] = FMA(KP951056516, T2c, T29); } { E T1b, T19, T1a, T1z, T1B, T1n, T1y, T1A, T1c; T1b = T15 - T18; T19 = T15 + T18; T1a = FNMS(KP250000000, T19, T12); T1n = T1h - T1m; T1y = T1s - T1x; T1z = FNMS(KP618033988, T1y, T1n); T1B = FMA(KP618033988, T1n, T1y); Rp[0] = T12 + T19; T1A = FMA(KP559016994, T1b, T1a); Rp[WS(rs, 4)] = FNMS(KP951056516, T1B, T1A); Rm[WS(rs, 3)] = FMA(KP951056516, T1B, T1A); T1c = FNMS(KP559016994, T1b, T1a); Rp[WS(rs, 2)] = FNMS(KP951056516, T1z, T1c); Rm[WS(rs, 1)] = FMA(KP951056516, T1z, T1c); } { E T1W, T1Q, T1V, T20, T22, T1Y, T1Z, T21, T1X; T1W = T1O - T1P; T1Q = T1O + T1P; T1V = FNMS(KP250000000, T1Q, T1U); T1Y = T16 - T17; T1Z = T13 - T14; T20 = FNMS(KP618033988, T1Z, T1Y); T22 = FMA(KP618033988, T1Y, T1Z); Ip[0] = T1Q + T1U; T21 = FMA(KP559016994, T1W, T1V); Im[WS(rs, 3)] = FMS(KP951056516, T22, T21); Ip[WS(rs, 4)] = FMA(KP951056516, T22, T21); T1X = FNMS(KP559016994, T1W, T1V); Im[WS(rs, 1)] = FMS(KP951056516, T20, T1X); Ip[WS(rs, 2)] = FMA(KP951056516, T20, T1X); } } } } static const tw_instr twinstr[] = { { TW_FULL, 1, 10 }, { TW_NEXT, 1, 0 } }; static const hc2c_desc desc = { 10, "hc2cf_10", twinstr, &GENUS, { 48, 18, 54, 0 } }; void X(codelet_hc2cf_10) (planner *p) { X(khc2c_register) (p, hc2cf_10, &desc, HC2C_VIA_RDFT); } #else /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -n 10 -dit -name hc2cf_10 -include rdft/scalar/hc2cf.h */ /* * This function contains 102 FP additions, 60 FP multiplications, * (or, 72 additions, 30 multiplications, 30 fused multiply/add), * 45 stack variables, 4 constants, and 40 memory accesses */ #include "rdft/scalar/hc2cf.h" static void hc2cf_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP587785252, +0.587785252292473129168705954639072768597652438); DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP559016994, +0.559016994374947424102293417182819058860154590); { INT m; for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) { E T7, T1O, TT, T1C, TF, TQ, TR, T1r, T1s, T1L, TX, TY, TZ, T16, T19; E T1y, Ti, Tt, Tu, T1o, T1p, T1M, TU, TV, TW, T1d, T1g, T1x; { E T1, T1B, T6, T1A; T1 = Rp[0]; T1B = Rm[0]; { E T3, T5, T2, T4; T3 = Ip[WS(rs, 2)]; T5 = Im[WS(rs, 2)]; T2 = W[8]; T4 = W[9]; T6 = FMA(T2, T3, T4 * T5); T1A = FNMS(T4, T3, T2 * T5); } T7 = T1 - T6; T1O = T1B - T1A; TT = T1 + T6; T1C = T1A + T1B; } { E Tz, T14, TP, T18, TE, T15, TK, T17; { E Tw, Ty, Tv, Tx; Tw = Rp[WS(rs, 2)]; Ty = Rm[WS(rs, 2)]; Tv = W[6]; Tx = W[7]; Tz = FMA(Tv, Tw, Tx * Ty); T14 = FNMS(Tx, Tw, Tv * Ty); } { E TM, TO, TL, TN; TM = Ip[0]; TO = Im[0]; TL = W[0]; TN = W[1]; TP = FMA(TL, TM, TN * TO); T18 = FNMS(TN, TM, TL * TO); } { E TB, TD, TA, TC; TB = Ip[WS(rs, 4)]; TD = Im[WS(rs, 4)]; TA = W[16]; TC = W[17]; TE = FMA(TA, TB, TC * TD); T15 = FNMS(TC, TB, TA * TD); } { E TH, TJ, TG, TI; TH = Rp[WS(rs, 3)]; TJ = Rm[WS(rs, 3)]; TG = W[10]; TI = W[11]; TK = FMA(TG, TH, TI * TJ); T17 = FNMS(TI, TH, TG * TJ); } TF = Tz - TE; TQ = TK - TP; TR = TF + TQ; T1r = T14 - T15; T1s = T18 - T17; T1L = T1s - T1r; TX = Tz + TE; TY = TK + TP; TZ = TX + TY; T16 = T14 + T15; T19 = T17 + T18; T1y = T16 + T19; } { E Tc, T1b, Ts, T1f, Th, T1c, Tn, T1e; { E T9, Tb, T8, Ta; T9 = Rp[WS(rs, 1)]; Tb = Rm[WS(rs, 1)]; T8 = W[2]; Ta = W[3]; Tc = FMA(T8, T9, Ta * Tb); T1b = FNMS(Ta, T9, T8 * Tb); } { E Tp, Tr, To, Tq; Tp = Ip[WS(rs, 1)]; Tr = Im[WS(rs, 1)]; To = W[4]; Tq = W[5]; Ts = FMA(To, Tp, Tq * Tr); T1f = FNMS(Tq, Tp, To * Tr); } { E Te, Tg, Td, Tf; Te = Ip[WS(rs, 3)]; Tg = Im[WS(rs, 3)]; Td = W[12]; Tf = W[13]; Th = FMA(Td, Te, Tf * Tg); T1c = FNMS(Tf, Te, Td * Tg); } { E Tk, Tm, Tj, Tl; Tk = Rp[WS(rs, 4)]; Tm = Rm[WS(rs, 4)]; Tj = W[14]; Tl = W[15]; Tn = FMA(Tj, Tk, Tl * Tm); T1e = FNMS(Tl, Tk, Tj * Tm); } Ti = Tc - Th; Tt = Tn - Ts; Tu = Ti + Tt; T1o = T1b - T1c; T1p = T1e - T1f; T1M = T1o + T1p; TU = Tc + Th; TV = Tn + Ts; TW = TU + TV; T1d = T1b + T1c; T1g = T1e + T1f; T1x = T1d + T1g; } { E T1l, TS, T1m, T1u, T1w, T1q, T1t, T1v, T1n; T1l = KP559016994 * (Tu - TR); TS = Tu + TR; T1m = FNMS(KP250000000, TS, T7); T1q = T1o - T1p; T1t = T1r + T1s; T1u = FMA(KP951056516, T1q, KP587785252 * T1t); T1w = FNMS(KP587785252, T1q, KP951056516 * T1t); Rm[WS(rs, 4)] = T7 + TS; T1v = T1m - T1l; Rm[WS(rs, 2)] = T1v - T1w; Rp[WS(rs, 3)] = T1v + T1w; T1n = T1l + T1m; Rm[0] = T1n - T1u; Rp[WS(rs, 1)] = T1n + T1u; } { E T1S, T1N, T1T, T1R, T1V, T1P, T1Q, T1W, T1U; T1S = KP559016994 * (T1M + T1L); T1N = T1L - T1M; T1T = FMA(KP250000000, T1N, T1O); T1P = TQ - TF; T1Q = Ti - Tt; T1R = FNMS(KP951056516, T1Q, KP587785252 * T1P); T1V = FMA(KP587785252, T1Q, KP951056516 * T1P); Im[WS(rs, 4)] = T1N - T1O; T1W = T1T - T1S; Im[WS(rs, 2)] = T1V - T1W; Ip[WS(rs, 3)] = T1V + T1W; T1U = T1S + T1T; Im[0] = T1R - T1U; Ip[WS(rs, 1)] = T1R + T1U; } { E T12, T10, T11, T1i, T1k, T1a, T1h, T1j, T13; T12 = KP559016994 * (TW - TZ); T10 = TW + TZ; T11 = FNMS(KP250000000, T10, TT); T1a = T16 - T19; T1h = T1d - T1g; T1i = FNMS(KP587785252, T1h, KP951056516 * T1a); T1k = FMA(KP951056516, T1h, KP587785252 * T1a); Rp[0] = TT + T10; T1j = T12 + T11; Rp[WS(rs, 4)] = T1j - T1k; Rm[WS(rs, 3)] = T1j + T1k; T13 = T11 - T12; Rp[WS(rs, 2)] = T13 - T1i; Rm[WS(rs, 1)] = T13 + T1i; } { E T1H, T1z, T1G, T1F, T1J, T1D, T1E, T1K, T1I; T1H = KP559016994 * (T1x - T1y); T1z = T1x + T1y; T1G = FNMS(KP250000000, T1z, T1C); T1D = TX - TY; T1E = TU - TV; T1F = FNMS(KP587785252, T1E, KP951056516 * T1D); T1J = FMA(KP951056516, T1E, KP587785252 * T1D); Ip[0] = T1z + T1C; T1K = T1H + T1G; Im[WS(rs, 3)] = T1J - T1K; Ip[WS(rs, 4)] = T1J + T1K; T1I = T1G - T1H; Im[WS(rs, 1)] = T1F - T1I; Ip[WS(rs, 2)] = T1F + T1I; } } } } static const tw_instr twinstr[] = { { TW_FULL, 1, 10 }, { TW_NEXT, 1, 0 } }; static const hc2c_desc desc = { 10, "hc2cf_10", twinstr, &GENUS, { 72, 30, 30, 0 } }; void X(codelet_hc2cf_10) (planner *p) { X(khc2c_register) (p, hc2cf_10, &desc, HC2C_VIA_RDFT); } #endif