/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Tue Sep 14 10:46:50 EDT 2021 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 7 -dif -name hb_7 -include rdft/scalar/hb.h */ /* * This function contains 72 FP additions, 66 FP multiplications, * (or, 18 additions, 12 multiplications, 54 fused multiply/add), * 41 stack variables, 6 constants, and 28 memory accesses */ #include "rdft/scalar/hb.h" static void hb_7(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP974927912, +0.974927912181823607018131682993931217232785801); DK(KP900968867, +0.900968867902419126236102319507445051165919162); DK(KP801937735, +0.801937735804838252472204639014890102331838324); DK(KP692021471, +0.692021471630095869627814897002069140197260599); DK(KP356895867, +0.356895867892209443894399510021300583399127187); DK(KP554958132, +0.554958132087371191422194871006410481067288862); { INT m; for (m = mb, W = W + ((mb - 1) * 12); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) { E T1, T4, TC, T7, TB, Ta, TA, TD, TZ, T1l, T1b, TP, Td, Tt, Tw; E Tv, Tu, Tp, Ty, T1j, T1e, TX, TS; T1 = cr[0]; { E T2, T3, T1a, TO, Tc; T2 = cr[WS(rs, 1)]; T3 = ci[0]; T4 = T2 + T3; TC = T2 - T3; { E T5, T6, T8, T9; T5 = cr[WS(rs, 2)]; T6 = ci[WS(rs, 1)]; T7 = T5 + T6; TB = T5 - T6; T8 = cr[WS(rs, 3)]; T9 = ci[WS(rs, 2)]; Ta = T8 + T9; TA = T8 - T9; } TD = FNMS(KP554958132, TC, TB); TZ = FMA(KP554958132, TB, TA); T1l = FMA(KP554958132, TA, TC); T1a = FNMS(KP356895867, T7, T4); T1b = FNMS(KP692021471, T1a, Ta); TO = FNMS(KP356895867, T4, Ta); TP = FNMS(KP692021471, TO, T7); Tc = FNMS(KP356895867, Ta, T7); Td = FNMS(KP692021471, Tc, T4); } Tt = ci[WS(rs, 6)]; { E Th, Tk, Tn, Tf, Tg; Tf = ci[WS(rs, 3)]; Tg = cr[WS(rs, 4)]; Th = Tf + Tg; Tw = Tf - Tg; { E Ti, Tj, Tl, Tm; Ti = ci[WS(rs, 4)]; Tj = cr[WS(rs, 5)]; Tk = Ti + Tj; Tv = Ti - Tj; Tl = ci[WS(rs, 5)]; Tm = cr[WS(rs, 6)]; Tn = Tl + Tm; Tu = Tl - Tm; } { E To, Tx, T1i, T1d, TW, TR; To = FNMS(KP554958132, Tn, Tk); Tp = FNMS(KP801937735, To, Th); Tx = FNMS(KP356895867, Tw, Tv); Ty = FNMS(KP692021471, Tx, Tu); T1i = FNMS(KP356895867, Tv, Tu); T1j = FNMS(KP692021471, T1i, Tw); T1d = FMA(KP554958132, Th, Tn); T1e = FMA(KP801937735, T1d, Tk); TW = FNMS(KP356895867, Tu, Tw); TX = FNMS(KP692021471, TW, Tv); TR = FMA(KP554958132, Tk, Th); TS = FNMS(KP801937735, TR, Tn); } } cr[0] = T1 + T4 + T7 + Ta; ci[0] = Tt + Tu + Tv + Tw; { E Tq, TI, TF, TL, Te, Tz, TE; Te = FNMS(KP900968867, Td, T1); Tq = FNMS(KP974927912, Tp, Te); TI = FMA(KP974927912, Tp, Te); Tz = FNMS(KP900968867, Ty, Tt); TE = FNMS(KP801937735, TD, TA); TF = FMA(KP974927912, TE, Tz); TL = FNMS(KP974927912, TE, Tz); { E Tb, Tr, Ts, TG; Tb = W[4]; Tr = Tb * Tq; Ts = W[5]; TG = Ts * Tq; cr[WS(rs, 3)] = FNMS(Ts, TF, Tr); ci[WS(rs, 3)] = FMA(Tb, TF, TG); } { E TH, TJ, TK, TM; TH = W[6]; TJ = TH * TI; TK = W[7]; TM = TK * TI; cr[WS(rs, 4)] = FNMS(TK, TL, TJ); ci[WS(rs, 4)] = FMA(TH, TL, TM); } } { E TT, T14, T11, T17, TQ, TY, T10; TQ = FNMS(KP900968867, TP, T1); TT = FNMS(KP974927912, TS, TQ); T14 = FMA(KP974927912, TS, TQ); TY = FNMS(KP900968867, TX, Tt); T10 = FNMS(KP801937735, TZ, TC); T11 = FMA(KP974927912, T10, TY); T17 = FNMS(KP974927912, T10, TY); { E TN, TU, TV, T12; TN = W[2]; TU = TN * TT; TV = W[3]; T12 = TV * TT; cr[WS(rs, 2)] = FNMS(TV, T11, TU); ci[WS(rs, 2)] = FMA(TN, T11, T12); } { E T13, T15, T16, T18; T13 = W[8]; T15 = T13 * T14; T16 = W[9]; T18 = T16 * T14; cr[WS(rs, 5)] = FNMS(T16, T17, T15); ci[WS(rs, 5)] = FMA(T13, T17, T18); } } { E T1f, T1q, T1n, T1t, T1c, T1k, T1m; T1c = FNMS(KP900968867, T1b, T1); T1f = FNMS(KP974927912, T1e, T1c); T1q = FMA(KP974927912, T1e, T1c); T1k = FNMS(KP900968867, T1j, Tt); T1m = FMA(KP801937735, T1l, TB); T1n = FMA(KP974927912, T1m, T1k); T1t = FNMS(KP974927912, T1m, T1k); { E T19, T1g, T1h, T1o; T19 = W[0]; T1g = T19 * T1f; T1h = W[1]; T1o = T1h * T1f; cr[WS(rs, 1)] = FNMS(T1h, T1n, T1g); ci[WS(rs, 1)] = FMA(T19, T1n, T1o); } { E T1p, T1r, T1s, T1u; T1p = W[10]; T1r = T1p * T1q; T1s = W[11]; T1u = T1s * T1q; cr[WS(rs, 6)] = FNMS(T1s, T1t, T1r); ci[WS(rs, 6)] = FMA(T1p, T1t, T1u); } } } } } static const tw_instr twinstr[] = { { TW_FULL, 1, 7 }, { TW_NEXT, 1, 0 } }; static const hc2hc_desc desc = { 7, "hb_7", twinstr, &GENUS, { 18, 12, 54, 0 } }; void X(codelet_hb_7) (planner *p) { X(khc2hc_register) (p, hb_7, &desc); } #else /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 7 -dif -name hb_7 -include rdft/scalar/hb.h */ /* * This function contains 72 FP additions, 60 FP multiplications, * (or, 36 additions, 24 multiplications, 36 fused multiply/add), * 36 stack variables, 6 constants, and 28 memory accesses */ #include "rdft/scalar/hb.h" static void hb_7(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP222520933, +0.222520933956314404288902564496794759466355569); DK(KP900968867, +0.900968867902419126236102319507445051165919162); DK(KP623489801, +0.623489801858733530525004884004239810632274731); DK(KP781831482, +0.781831482468029808708444526674057750232334519); DK(KP974927912, +0.974927912181823607018131682993931217232785801); DK(KP433883739, +0.433883739117558120475768332848358754609990728); { INT m; for (m = mb, W = W + ((mb - 1) * 12); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) { E T1, T4, T7, Ta, Tx, TI, TV, TQ, TE, Tm, Tb, Te, Th, Tk, Tq; E TF, TR, TU, TJ, Tt; { E Tu, Tw, Tv, T2, T3; T1 = cr[0]; T2 = cr[WS(rs, 1)]; T3 = ci[0]; T4 = T2 + T3; Tu = T2 - T3; { E T5, T6, T8, T9; T5 = cr[WS(rs, 2)]; T6 = ci[WS(rs, 1)]; T7 = T5 + T6; Tw = T5 - T6; T8 = cr[WS(rs, 3)]; T9 = ci[WS(rs, 2)]; Ta = T8 + T9; Tv = T8 - T9; } Tx = FMA(KP433883739, Tu, KP974927912 * Tv) - (KP781831482 * Tw); TI = FMA(KP781831482, Tu, KP974927912 * Tw) + (KP433883739 * Tv); TV = FNMS(KP781831482, Tv, KP974927912 * Tu) - (KP433883739 * Tw); TQ = FMA(KP623489801, Ta, T1) + FNMA(KP900968867, T7, KP222520933 * T4); TE = FMA(KP623489801, T4, T1) + FNMA(KP900968867, Ta, KP222520933 * T7); Tm = FMA(KP623489801, T7, T1) + FNMA(KP222520933, Ta, KP900968867 * T4); } { E Tp, Tn, To, Tc, Td; Tb = ci[WS(rs, 6)]; Tc = ci[WS(rs, 5)]; Td = cr[WS(rs, 6)]; Te = Tc - Td; Tp = Tc + Td; { E Tf, Tg, Ti, Tj; Tf = ci[WS(rs, 4)]; Tg = cr[WS(rs, 5)]; Th = Tf - Tg; Tn = Tf + Tg; Ti = ci[WS(rs, 3)]; Tj = cr[WS(rs, 4)]; Tk = Ti - Tj; To = Ti + Tj; } Tq = FNMS(KP974927912, To, KP781831482 * Tn) - (KP433883739 * Tp); TF = FMA(KP781831482, Tp, KP974927912 * Tn) + (KP433883739 * To); TR = FMA(KP433883739, Tn, KP781831482 * To) - (KP974927912 * Tp); TU = FMA(KP623489801, Tk, Tb) + FNMA(KP900968867, Th, KP222520933 * Te); TJ = FMA(KP623489801, Te, Tb) + FNMA(KP900968867, Tk, KP222520933 * Th); Tt = FMA(KP623489801, Th, Tb) + FNMA(KP222520933, Tk, KP900968867 * Te); } cr[0] = T1 + T4 + T7 + Ta; ci[0] = Tb + Te + Th + Tk; { E Tr, Ty, Tl, Ts; Tr = Tm - Tq; Ty = Tt - Tx; Tl = W[6]; Ts = W[7]; cr[WS(rs, 4)] = FNMS(Ts, Ty, Tl * Tr); ci[WS(rs, 4)] = FMA(Tl, Ty, Ts * Tr); } { E TY, T10, TX, TZ; TY = TQ + TR; T10 = TV + TU; TX = W[2]; TZ = W[3]; cr[WS(rs, 2)] = FNMS(TZ, T10, TX * TY); ci[WS(rs, 2)] = FMA(TX, T10, TZ * TY); } { E TA, TC, Tz, TB; TA = Tm + Tq; TC = Tx + Tt; Tz = W[4]; TB = W[5]; cr[WS(rs, 3)] = FNMS(TB, TC, Tz * TA); ci[WS(rs, 3)] = FMA(Tz, TC, TB * TA); } { E TM, TO, TL, TN; TM = TE + TF; TO = TJ - TI; TL = W[10]; TN = W[11]; cr[WS(rs, 6)] = FNMS(TN, TO, TL * TM); ci[WS(rs, 6)] = FMA(TL, TO, TN * TM); } { E TS, TW, TP, TT; TS = TQ - TR; TW = TU - TV; TP = W[8]; TT = W[9]; cr[WS(rs, 5)] = FNMS(TT, TW, TP * TS); ci[WS(rs, 5)] = FMA(TP, TW, TT * TS); } { E TG, TK, TD, TH; TG = TE - TF; TK = TI + TJ; TD = W[0]; TH = W[1]; cr[WS(rs, 1)] = FNMS(TH, TK, TD * TG); ci[WS(rs, 1)] = FMA(TD, TK, TH * TG); } } } } static const tw_instr twinstr[] = { { TW_FULL, 1, 7 }, { TW_NEXT, 1, 0 } }; static const hc2hc_desc desc = { 7, "hb_7", twinstr, &GENUS, { 36, 24, 36, 0 } }; void X(codelet_hb_7) (planner *p) { X(khc2hc_register) (p, hb_7, &desc); } #endif