/** * Furnace Tracker - multi-system chiptune tracker * Copyright (C) 2021-2022 tildearrow and contributors * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "tx81z.h" #include "../engine.h" #include #include #include "fmshared_OPM.h" // actually 0x40 but the upper bit of data selects address #define ADDR_WS_FINE 0x100 // actually 0xc0 but bit 5 of data selects address #define ADDR_EGS_REV 0x120 static unsigned short chanOffs[8]={ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07 }; static unsigned short opOffs[4]={ 0x00, 0x08, 0x10, 0x18 }; static bool isOutput[8][4]={ // 1 3 2 4 {false,false,false,true}, {false,false,false,true}, {false,false,false,true}, {false,false,false,true}, {false,false,true ,true}, {false,true ,true ,true}, {false,true ,true ,true}, {true ,true ,true ,true}, }; static unsigned char dtTable[8]={ 7,6,5,0,1,2,3,4 }; static int orderedOps[4]={ 0,2,1,3 }; #define rWrite(a,v) if (!skipRegisterWrites) {pendingWrites[a]=v;} #define immWrite(a,v) if (!skipRegisterWrites) {writes.emplace(a,v); if (dumpWrites) {addWrite(a,v);} } #define NOTE_LINEAR(x) (((x)<<6)+baseFreqOff+log2(parent->song.tuning/440.0)*12.0*64.0) const char* regCheatSheetOPZ[]={ "Test", "00", "NoteCtl", "08", "NoiseCtl", "0F", "ClockA1", "10", "ClockA2", "11", "ClockB", "12", "Control", "14", "LFOFreq", "18", "AMD_PMD", "19", "LFOWave", "1B", "L_R_FB_ALG", "20", "KC", "28", "KF", "30", "PMS_AMS", "38", "DT_MULT", "40", "TL", "60", "KS_AR", "80", "AM_DR", "A0", "DT2_SR", "C0", "SL_RR", "E0", NULL }; const char** DivPlatformTX81Z::getRegisterSheet() { return regCheatSheetOPZ; } const char* DivPlatformTX81Z::getEffectName(unsigned char effect) { switch (effect) { case 0x10: return "10xx: Set noise frequency (xx: value; 0 disables noise)"; break; case 0x11: return "11xx: Set feedback (0 to 7)"; break; case 0x12: return "12xx: Set level of operator 1 (0 highest, 7F lowest)"; break; case 0x13: return "13xx: Set level of operator 2 (0 highest, 7F lowest)"; break; case 0x14: return "14xx: Set level of operator 3 (0 highest, 7F lowest)"; break; case 0x15: return "15xx: Set level of operator 4 (0 highest, 7F lowest)"; break; case 0x16: return "16xy: Set operator multiplier (x: operator from 1 to 4; y: multiplier)"; break; case 0x17: return "17xx: Set LFO speed"; break; case 0x18: return "18xx: Set LFO waveform (0 saw, 1 square, 2 triangle, 3 noise)"; break; case 0x19: return "19xx: Set attack of all operators (0 to 1F)"; break; case 0x1a: return "1Axx: Set attack of operator 1 (0 to 1F)"; break; case 0x1b: return "1Bxx: Set attack of operator 2 (0 to 1F)"; break; case 0x1c: return "1Cxx: Set attack of operator 3 (0 to 1F)"; break; case 0x1d: return "1Dxx: Set attack of operator 4 (0 to 1F)"; break; case 0x1e: return "1Exx: Set AM depth (0 to 7F)"; break; case 0x1f: return "1Fxx: Set PM depth (0 to 7F)"; break; case 0x30: return "30xx: Toggle hard envelope reset on new notes"; break; } return NULL; } void DivPlatformTX81Z::acquire(short* bufL, short* bufR, size_t start, size_t len) { static int os[2]; ymfm::ym2414::fm_engine* fme=fm_ymfm->debug_engine(); for (size_t h=start; hwrite(0x0+((w.addr>>8)<<1),w.addr); fm_ymfm->write(0x1+((w.addr>>8)<<1),w.val); regPool[w.addr&0xff]=w.val; writes.pop(); delay=1; } } fm_ymfm->generate(&out_ymfm); for (int i=0; i<8; i++) { oscBuf[i]->data[oscBuf[i]->needle++]=(fme->debug_channel(i)->debug_output(0)+fme->debug_channel(i)->debug_output(1)); } os[0]=out_ymfm.data[0]; if (os[0]<-32768) os[0]=-32768; if (os[0]>32767) os[0]=32767; os[1]=out_ymfm.data[1]; if (os[1]<-32768) os[1]=-32768; if (os[1]>32767) os[1]=32767; bufL[h]=os[0]; bufR[h]=os[1]; } } static unsigned char noteMap[12]={ 0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14 }; inline int hScale(int note) { return ((note/12)<<4)+(noteMap[note%12]); } void DivPlatformTX81Z::tick(bool sysTick) { for (int i=0; i<8; i++) { chan[i].std.next(); if (chan[i].std.vol.had) { chan[i].outVol=(chan[i].vol*MIN(127,chan[i].std.vol.val))/127; for (int j=0; j<4; j++) { unsigned short baseAddr=chanOffs[i]|opOffs[j]; DivInstrumentFM::Operator& op=chan[i].state.op[j]; if (isMuted[i]) { rWrite(baseAddr+ADDR_TL,127); } else { if (isOutput[chan[i].state.alg][j]) { rWrite(baseAddr+ADDR_TL,127-(((127-op.tl)*(chan[i].outVol&0x7f))/127)); } else { rWrite(baseAddr+ADDR_TL,op.tl); } } } } if (chan[i].std.arp.had) { if (!chan[i].inPorta) { if (chan[i].std.arp.mode) { chan[i].baseFreq=NOTE_LINEAR(chan[i].std.arp.val); } else { chan[i].baseFreq=NOTE_LINEAR(chan[i].note+(signed char)chan[i].std.arp.val); } } chan[i].freqChanged=true; } else { if (chan[i].std.arp.mode && chan[i].std.arp.finished) { chan[i].baseFreq=NOTE_LINEAR(chan[i].note); chan[i].freqChanged=true; } } if (chan[i].std.duty.had) { if (chan[i].std.duty.val>0) { rWrite(0x0f,0x80|(0x20-chan[i].std.duty.val)); } else { rWrite(0x0f,0); } } if (chan[i].std.wave.had) { rWrite(0x1b,chan[i].std.wave.val&3); } if (chan[i].std.pitch.had) { if (chan[i].std.pitch.mode) { chan[i].pitch2+=chan[i].std.pitch.val; CLAMP_VAR(chan[i].pitch2,-2048,2048); } else { chan[i].pitch2=chan[i].std.pitch.val; } chan[i].freqChanged=true; } if (chan[i].std.phaseReset.had) { if (chan[i].std.phaseReset.val==1) { chan[i].keyOn=true; } } if (chan[i].std.ex1.had) { amDepth=chan[i].std.ex1.val; immWrite(0x19,amDepth); } if (chan[i].std.ex2.had) { pmDepth=chan[i].std.ex2.val; immWrite(0x19,0x80|pmDepth); } if (chan[i].std.ex3.had) { immWrite(0x18,chan[i].std.ex3.val); } if (chan[i].std.alg.had) { chan[i].state.alg=chan[i].std.alg.val; immWrite(chanOffs[i]+ADDR_LR_FB_ALG,(chan[i].state.alg&7)|(chan[i].state.fb<<3)|(chan[i].active?0:0x40)|(chan[i].chVolR<<7)); if (!parent->song.algMacroBehavior) for (int j=0; j<4; j++) { unsigned short baseAddr=chanOffs[i]|opOffs[j]; DivInstrumentFM::Operator& op=chan[i].state.op[j]; if (isMuted[i]) { rWrite(baseAddr+ADDR_TL,127); } else { if (isOutput[chan[i].state.alg][j]) { rWrite(baseAddr+ADDR_TL,127-(((127-op.tl)*(chan[i].outVol&0x7f))/127)); } else { rWrite(baseAddr+ADDR_TL,op.tl); } } } } if (chan[i].std.fb.had) { chan[i].state.fb=chan[i].std.fb.val; immWrite(chanOffs[i]+ADDR_LR_FB_ALG,(chan[i].state.alg&7)|(chan[i].state.fb<<3)|(chan[i].active?0:0x40)|(chan[i].chVolR<<7)); } if (chan[i].std.fms.had) { chan[i].state.fms=chan[i].std.fms.val; rWrite(chanOffs[i]+ADDR_FMS_AMS,((chan[i].state.fms&7)<<4)|(chan[i].state.ams&3)); } if (chan[i].std.ams.had) { chan[i].state.ams=chan[i].std.ams.val; rWrite(chanOffs[i]+ADDR_FMS_AMS,((chan[i].state.fms&7)<<4)|(chan[i].state.ams&3)); } for (int j=0; j<4; j++) { unsigned short baseAddr=chanOffs[i]|opOffs[j]; DivInstrumentFM::Operator& op=chan[i].state.op[j]; DivMacroInt::IntOp& m=chan[i].std.op[j]; if (m.am.had) { op.am=m.am.val; rWrite(baseAddr+ADDR_AM_DR,(op.dr&31)|(op.am<<7)); } if (m.ar.had) { op.ar=m.ar.val; rWrite(baseAddr+ADDR_RS_AR,(op.ar&31)|(op.egt<<5)|(op.rs<<6)); } if (m.dr.had) { op.dr=m.dr.val; rWrite(baseAddr+ADDR_AM_DR,(op.dr&31)|(op.am<<7)); } if (m.mult.had) { op.mult=m.mult.val; rWrite(baseAddr+ADDR_MULT_DT,(op.mult&15)|(dtTable[op.dt&7]<<4)); } if (m.rr.had) { op.rr=m.rr.val; rWrite(baseAddr+ADDR_SL_RR,(op.rr&15)|(op.sl<<4)); } if (m.sl.had) { op.sl=m.sl.val; rWrite(baseAddr+ADDR_SL_RR,(op.rr&15)|(op.sl<<4)); } if (m.tl.had) { op.tl=127-m.tl.val; if (isMuted[i]) { rWrite(baseAddr+ADDR_TL,127); } else { if (isOutput[chan[i].state.alg][j]) { rWrite(baseAddr+ADDR_TL,127-(((127-op.tl)*(chan[i].outVol&0x7f))/127)); } else { rWrite(baseAddr+ADDR_TL,op.tl); } } } if (m.rs.had) { op.rs=m.rs.val; rWrite(baseAddr+ADDR_RS_AR,(op.ar&31)|(op.egt<<5)|(op.rs<<6)); } if (m.dt.had) { op.dt=m.dt.val; rWrite(baseAddr+ADDR_MULT_DT,(op.mult&15)|(dtTable[op.dt&7]<<4)); } if (m.d2r.had) { op.d2r=m.d2r.val; rWrite(baseAddr+ADDR_DT2_D2R,(op.d2r&31)|(op.dt2<<6)); } if (m.dt2.had) { op.dt2=m.dt2.val; rWrite(baseAddr+ADDR_DT2_D2R,(op.d2r&31)|(op.dt2<<6)); } } if (chan[i].keyOn || chan[i].keyOff) { if (chan[i].hardReset && chan[i].keyOn) { for (int j=0; j<4; j++) { unsigned short baseAddr=chanOffs[i]|opOffs[j]; immWrite(baseAddr+ADDR_SL_RR,0x0f); immWrite(baseAddr+ADDR_TL,0x7f); oldWrites[baseAddr+ADDR_SL_RR]=-1; oldWrites[baseAddr+ADDR_TL]=-1; } } //if (chan[i].keyOn) immWrite(0x08,i); immWrite(chanOffs[i]+ADDR_LR_FB_ALG,(chan[i].state.alg&7)|(chan[i].state.fb<<3)|0x00|(chan[i].chVolR<<7)); if (chan[i].hardReset && chan[i].keyOn) { for (int j=0; j<4; j++) { unsigned short baseAddr=chanOffs[i]|opOffs[j]; for (int k=0; k<9; k++) { immWrite(baseAddr+ADDR_SL_RR,0x0f); } } } chan[i].keyOff=false; } } for (int i=0; i<256; i++) { if (pendingWrites[i]!=oldWrites[i]) { immWrite(i,pendingWrites[i]&0xff); oldWrites[i]=pendingWrites[i]; } } for (int i=256; i<288; i++) { if (pendingWrites[i]!=oldWrites[i]) { immWrite(0x40+(i&0x1f),0x80|(pendingWrites[i]&0x7f)); oldWrites[i]=pendingWrites[i]; } } for (int i=288; i<320; i++) { if (pendingWrites[i]!=oldWrites[i]) { immWrite(0xc0+(i&0x1f),0x20|(pendingWrites[i]&0xdf)); oldWrites[i]=pendingWrites[i]; } } for (int i=0; i<8; i++) { if (chan[i].freqChanged) { chan[i].freq=chan[i].baseFreq+(chan[i].pitch>>1)-64+chan[i].pitch2; if (chan[i].freq<0) chan[i].freq=0; if (chan[i].freq>=(95<<6)) chan[i].freq=(95<<6)-1; immWrite(i+0x28,hScale(chan[i].freq>>6)); immWrite(i+0x30,(chan[i].freq<<2)|(chan[i].chVolL==chan[i].chVolR)); chan[i].freqChanged=false; } if (chan[i].keyOn) { //immWrite(0x08,i); immWrite(chanOffs[i]+ADDR_LR_FB_ALG,(chan[i].state.alg&7)|(chan[i].state.fb<<3)|0x40|(chan[i].chVolR<<7)); chan[i].keyOn=false; } } } void DivPlatformTX81Z::muteChannel(int ch, bool mute) { isMuted[ch]=mute; for (int i=0; i<4; i++) { unsigned short baseAddr=chanOffs[ch]|opOffs[i]; DivInstrumentFM::Operator op=chan[ch].state.op[i]; if (isMuted[ch]) { rWrite(baseAddr+ADDR_TL,127); } else { if (isOutput[chan[ch].state.alg][i]) { rWrite(baseAddr+ADDR_TL,127-(((127-op.tl)*(chan[ch].outVol&0x7f))/127)); } else { rWrite(baseAddr+ADDR_TL,op.tl); } } } } int DivPlatformTX81Z::dispatch(DivCommand c) { switch (c.cmd) { case DIV_CMD_NOTE_ON: { DivInstrument* ins=parent->getIns(chan[c.chan].ins,DIV_INS_OPZ); if (chan[c.chan].insChanged) { chan[c.chan].state=ins->fm; } chan[c.chan].macroInit(ins); if (!chan[c.chan].std.vol.will) { chan[c.chan].outVol=chan[c.chan].vol; } for (int i=0; i<4; i++) { unsigned short baseAddr=chanOffs[c.chan]|opOffs[i]; DivInstrumentFM::Operator op=chan[c.chan].state.op[i]; if (isMuted[c.chan]) { rWrite(baseAddr+ADDR_TL,127); } else { if (isOutput[chan[c.chan].state.alg][i]) { if (!chan[c.chan].active || chan[c.chan].insChanged) { rWrite(baseAddr+ADDR_TL,127-(((127-op.tl)*(chan[c.chan].outVol&0x7f))/127)); } } else { if (chan[c.chan].insChanged) { rWrite(baseAddr+ADDR_TL,op.tl); } } } if (chan[c.chan].insChanged) { rWrite(baseAddr+ADDR_MULT_DT,(op.mult&15)|(dtTable[op.dt&7]<<4)); rWrite(baseAddr+ADDR_RS_AR,(op.ar&31)|(op.egt<<5)|(op.rs<<6)); rWrite(baseAddr+ADDR_AM_DR,(op.dr&31)|(op.am<<7)); rWrite(baseAddr+ADDR_DT2_D2R,(op.d2r&31)|(op.dt2<<6)); rWrite(baseAddr+ADDR_SL_RR,(op.rr&15)|(op.sl<<4)); rWrite(baseAddr+ADDR_WS_FINE,(op.dvb&15)|(op.ws<<4)); rWrite(baseAddr+ADDR_EGS_REV,(op.dam&7)|(op.ksl<<6)); } } if (chan[c.chan].insChanged) { /* if (isMuted[c.chan]) { rWrite(chanOffs[c.chan]+ADDR_LR_FB_ALG,(chan[c.chan].state.alg&7)|(chan[c.chan].state.fb<<3)); } else { rWrite(chanOffs[c.chan]+ADDR_LR_FB_ALG,(chan[c.chan].state.alg&7)|(chan[c.chan].state.fb<<3)|((chan[c.chan].chVolL&1)<<6)|((chan[c.chan].chVolR&1)<<7)); }*/ rWrite(chanOffs[c.chan]+ADDR_FMS_AMS,((chan[c.chan].state.fms&7)<<4)|(chan[c.chan].state.ams&3)); //rWrite(chanOffs[c.chan]+ADDR_FMS_AMS,0x84|((chan[c.chan].state.fms2&7)<<4)|(chan[c.chan].state.ams2&3)); } chan[c.chan].insChanged=false; if (c.value!=DIV_NOTE_NULL) { chan[c.chan].baseFreq=NOTE_LINEAR(c.value); chan[c.chan].note=c.value; chan[c.chan].freqChanged=true; } chan[c.chan].keyOn=true; chan[c.chan].active=true; break; } case DIV_CMD_NOTE_OFF: chan[c.chan].keyOff=true; chan[c.chan].keyOn=false; chan[c.chan].active=false; break; case DIV_CMD_NOTE_OFF_ENV: chan[c.chan].keyOff=true; chan[c.chan].keyOn=false; chan[c.chan].active=false; chan[c.chan].std.release(); break; case DIV_CMD_ENV_RELEASE: chan[c.chan].std.release(); break; case DIV_CMD_VOLUME: { chan[c.chan].vol=c.value; if (!chan[c.chan].std.vol.has) { chan[c.chan].outVol=c.value; } for (int i=0; i<4; i++) { unsigned short baseAddr=chanOffs[c.chan]|opOffs[i]; DivInstrumentFM::Operator& op=chan[c.chan].state.op[i]; if (isMuted[c.chan]) { rWrite(baseAddr+ADDR_TL,127); } else { if (isOutput[chan[c.chan].state.alg][i]) { rWrite(baseAddr+ADDR_TL,127-(((127-op.tl)*(chan[c.chan].outVol&0x7f))/127)); } else { rWrite(baseAddr+ADDR_TL,op.tl); } } } break; } case DIV_CMD_GET_VOLUME: { return chan[c.chan].vol; break; } case DIV_CMD_INSTRUMENT: if (chan[c.chan].ins!=c.value || c.value2==1) { chan[c.chan].insChanged=true; } chan[c.chan].ins=c.value; break; case DIV_CMD_PANNING: { chan[c.chan].chVolL=(c.value>0); chan[c.chan].chVolR=(c.value2>0); chan[c.chan].freqChanged=true; /* if (isMuted[c.chan]) { rWrite(chanOffs[c.chan]+ADDR_LR_FB_ALG,(chan[c.chan].state.alg&7)|(chan[c.chan].state.fb<<3)); } else { rWrite(chanOffs[c.chan]+ADDR_LR_FB_ALG,(chan[c.chan].state.alg&7)|(chan[c.chan].state.fb<<3)|((chan[c.chan].chVolL&1)<<6)|((chan[c.chan].chVolR&1)<<7)); }*/ break; } case DIV_CMD_PITCH: { chan[c.chan].pitch=c.value; chan[c.chan].freqChanged=true; break; } case DIV_CMD_NOTE_PORTA: { int destFreq=NOTE_LINEAR(c.value2); int newFreq; bool return2=false; if (destFreq>chan[c.chan].baseFreq) { newFreq=chan[c.chan].baseFreq+c.value; if (newFreq>=destFreq) { newFreq=destFreq; return2=true; } } else { newFreq=chan[c.chan].baseFreq-c.value; if (newFreq<=destFreq) { newFreq=destFreq; return2=true; } } chan[c.chan].baseFreq=newFreq; chan[c.chan].freqChanged=true; if (return2) { chan[c.chan].inPorta=false; return 2; } break; } case DIV_CMD_LEGATO: { chan[c.chan].baseFreq=NOTE_LINEAR(c.value); chan[c.chan].freqChanged=true; break; } case DIV_CMD_FM_LFO: { rWrite(0x18,c.value); break; } case DIV_CMD_FM_LFO_WAVE: { rWrite(0x1b,c.value&3); break; } case DIV_CMD_FM_FB: { chan[c.chan].state.fb=c.value&7; /* if (isMuted[c.chan]) { rWrite(chanOffs[c.chan]+ADDR_LR_FB_ALG,(chan[c.chan].state.alg&7)|(chan[c.chan].state.fb<<3)); } else { rWrite(chanOffs[c.chan]+ADDR_LR_FB_ALG,(chan[c.chan].state.alg&7)|(chan[c.chan].state.fb<<3)|((chan[c.chan].chVolL&1)<<6)|((chan[c.chan].chVolR&1)<<7)); }*/ break; } case DIV_CMD_FM_MULT: { unsigned short baseAddr=chanOffs[c.chan]|opOffs[orderedOps[c.value]]; DivInstrumentFM::Operator& op=chan[c.chan].state.op[orderedOps[c.value]]; op.mult=c.value2&15; rWrite(baseAddr+ADDR_MULT_DT,(op.mult&15)|(dtTable[op.dt&7]<<4)); break; } case DIV_CMD_FM_TL: { unsigned short baseAddr=chanOffs[c.chan]|opOffs[orderedOps[c.value]]; DivInstrumentFM::Operator& op=chan[c.chan].state.op[orderedOps[c.value]]; op.tl=c.value2; if (isMuted[c.chan]) { rWrite(baseAddr+ADDR_TL,127); } else { if (isOutput[chan[c.chan].state.alg][c.value]) { rWrite(baseAddr+ADDR_TL,127-(((127-op.tl)*(chan[c.chan].outVol&0x7f))/127)); } else { rWrite(baseAddr+ADDR_TL,op.tl); } } break; } case DIV_CMD_FM_AR: { if (c.value<0) { for (int i=0; i<4; i++) { DivInstrumentFM::Operator& op=chan[c.chan].state.op[i]; op.ar=c.value2&31; unsigned short baseAddr=chanOffs[c.chan]|opOffs[i]; rWrite(baseAddr+ADDR_RS_AR,(op.ar&31)|(op.egt<<5)|(op.rs<<6)); } } else { DivInstrumentFM::Operator& op=chan[c.chan].state.op[orderedOps[c.value]]; op.ar=c.value2&31; unsigned short baseAddr=chanOffs[c.chan]|opOffs[orderedOps[c.value]]; rWrite(baseAddr+ADDR_RS_AR,(op.ar&31)|(op.egt<<5)|(op.rs<<6)); } break; } case DIV_CMD_FM_AM_DEPTH: { amDepth=c.value; immWrite(0x19,amDepth); break; } case DIV_CMD_FM_PM_DEPTH: { pmDepth=c.value; immWrite(0x19,0x80|pmDepth); break; } case DIV_CMD_FM_HARD_RESET: chan[c.chan].hardReset=c.value; break; case DIV_CMD_STD_NOISE_FREQ: { if (c.chan!=7) break; if (c.value) { if (c.value>0x1f) { rWrite(0x0f,0x80); } else { rWrite(0x0f,0x80|(0x1f-c.value)); } } else { rWrite(0x0f,0); } break; } case DIV_ALWAYS_SET_VOLUME: return 0; break; case DIV_CMD_GET_VOLMAX: return 127; break; case DIV_CMD_PRE_PORTA: chan[c.chan].inPorta=c.value; break; case DIV_CMD_PRE_NOTE: break; default: //printf("WARNING: unimplemented command %d\n",c.cmd); break; } return 1; } void DivPlatformTX81Z::forceIns() { for (int i=0; i<8; i++) { for (int j=0; j<4; j++) { unsigned short baseAddr=chanOffs[i]|opOffs[j]; DivInstrumentFM::Operator op=chan[i].state.op[j]; if (isMuted[i]) { rWrite(baseAddr+ADDR_TL,127); } else { if (isOutput[chan[i].state.alg][j]) { rWrite(baseAddr+ADDR_TL,127-(((127-op.tl)*(chan[i].outVol&0x7f))/127)); } else { rWrite(baseAddr+ADDR_TL,op.tl); } } rWrite(baseAddr+ADDR_MULT_DT,(op.mult&15)|(dtTable[op.dt&7]<<4)); rWrite(baseAddr+ADDR_RS_AR,(op.ar&31)|(op.egt<<5)|(op.rs<<6)); rWrite(baseAddr+ADDR_AM_DR,(op.dr&31)|(op.am<<7)); rWrite(baseAddr+ADDR_DT2_D2R,(op.d2r&31)|(op.dt2<<6)); rWrite(baseAddr+ADDR_SL_RR,(op.rr&15)|(op.sl<<4)); rWrite(baseAddr+ADDR_WS_FINE,(op.dvb&15)|(op.ws<<4)); rWrite(baseAddr+ADDR_EGS_REV,(op.dam&7)|(op.ksl<<6)); } /* if (isMuted[i]) { rWrite(chanOffs[i]+ADDR_LR_FB_ALG,(chan[i].state.alg&7)|(chan[i].state.fb<<3)); } else { rWrite(chanOffs[i]+ADDR_LR_FB_ALG,(chan[i].state.alg&7)|(chan[i].state.fb<<3)|((chan[i].chVolL&1)<<6)|((chan[i].chVolR&1)<<7)); }*/ rWrite(chanOffs[i]+ADDR_FMS_AMS,((chan[i].state.fms&7)<<4)|(chan[i].state.ams&3)); //rWrite(chanOffs[i]+ADDR_FMS_AMS,0x84|((chan[i].state.fms2&7)<<4)|(chan[i].state.ams2&3)); if (chan[i].active) { chan[i].keyOn=true; chan[i].freqChanged=true; } } immWrite(0x19,amDepth); immWrite(0x19,0x80|pmDepth); } void DivPlatformTX81Z::notifyInsChange(int ins) { for (int i=0; i<8; i++) { if (chan[i].ins==ins) { chan[i].insChanged=true; } } } void* DivPlatformTX81Z::getChanState(int ch) { return &chan[ch]; } DivDispatchOscBuffer* DivPlatformTX81Z::getOscBuffer(int ch) { return oscBuf[ch]; } unsigned char* DivPlatformTX81Z::getRegisterPool() { return regPool; } int DivPlatformTX81Z::getRegisterPoolSize() { return 330; } void DivPlatformTX81Z::poke(unsigned int addr, unsigned short val) { immWrite(addr,val); } void DivPlatformTX81Z::poke(std::vector& wlist) { for (DivRegWrite& i: wlist) immWrite(i.addr,i.val); } void DivPlatformTX81Z::reset() { while (!writes.empty()) writes.pop(); memset(regPool,0,330); fm_ymfm->reset(); if (dumpWrites) { addWrite(0xffffffff,0); } for (int i=0; i<8; i++) { chan[i]=DivPlatformTX81Z::Channel(); chan[i].std.setEngine(parent); chan[i].vol=0x7f; chan[i].outVol=0x7f; } for (int i=0; i<330; i++) { oldWrites[i]=-1; pendingWrites[i]=-1; } lastBusy=60; pcmCycles=0; pcmL=0; pcmR=0; delay=0; amDepth=0x7f; pmDepth=0x7f; //rWrite(0x18,0x10); immWrite(0x19,amDepth); immWrite(0x19,0x80|pmDepth); //rWrite(0x1b,0x00); extMode=false; } void DivPlatformTX81Z::setFlags(unsigned int flags) { if (flags==2) { chipClock=4000000.0; baseFreqOff=-122; } else if (flags==1) { chipClock=COLOR_PAL*4.0/5.0; baseFreqOff=12; } else { chipClock=COLOR_NTSC; baseFreqOff=0; } rate=chipClock/64; for (int i=0; i<8; i++) { oscBuf[i]->rate=rate; } } bool DivPlatformTX81Z::isStereo() { return true; } int DivPlatformTX81Z::init(DivEngine* p, int channels, int sugRate, unsigned int flags) { parent=p; dumpWrites=false; skipRegisterWrites=false; for (int i=0; i<8; i++) { isMuted[i]=false; oscBuf[i]=new DivDispatchOscBuffer; } setFlags(flags); fm_ymfm=new ymfm::ym2414(iface); reset(); return 8; } void DivPlatformTX81Z::quit() { for (int i=0; i<8; i++) { delete oscBuf[i]; } delete fm_ymfm; } DivPlatformTX81Z::~DivPlatformTX81Z() { }