/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Tue Sep 14 10:47:22 EDT 2021 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 4 -dif -sign 1 -name hc2cbdftv_4 -include rdft/simd/hc2cbv.h */ /* * This function contains 15 FP additions, 12 FP multiplications, * (or, 9 additions, 6 multiplications, 6 fused multiply/add), * 20 stack variables, 0 constants, and 8 memory accesses */ #include "rdft/simd/hc2cbv.h" static void hc2cbdftv_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { { INT m; for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 6)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(16, rs)) { V Th, Tg, T8, Tc, T4, Ta, T7, Tb, T2, T3, T5, T6, Tf, T1, T9; V Td, Tj, Te, Ti; T2 = LD(&(Rp[0]), ms, &(Rp[0])); T3 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); T4 = VFNMSCONJ(T3, T2); Ta = VFMACONJ(T3, T2); T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); T6 = LD(&(Rm[0]), -ms, &(Rm[0])); T7 = VFNMSCONJ(T6, T5); Tb = VFMACONJ(T6, T5); Th = VADD(Ta, Tb); Tf = LDW(&(W[0])); Tg = VZMULI(Tf, VFMAI(T7, T4)); T1 = LDW(&(W[TWVL * 4])); T8 = VZMULI(T1, VFNMSI(T7, T4)); T9 = LDW(&(W[TWVL * 2])); Tc = VZMUL(T9, VSUB(Ta, Tb)); Td = VADD(T8, Tc); ST(&(Rp[WS(rs, 1)]), Td, ms, &(Rp[WS(rs, 1)])); Tj = VCONJ(VSUB(Th, Tg)); ST(&(Rm[0]), Tj, -ms, &(Rm[0])); Te = VCONJ(VSUB(Tc, T8)); ST(&(Rm[WS(rs, 1)]), Te, -ms, &(Rm[WS(rs, 1)])); Ti = VADD(Tg, Th); ST(&(Rp[0]), Ti, ms, &(Rp[0])); } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(1, 1), VTW(1, 2), VTW(1, 3), { TW_NEXT, VL, 0 } }; static const hc2c_desc desc = { 4, XSIMD_STRING("hc2cbdftv_4"), twinstr, &GENUS, { 9, 6, 6, 0 } }; void XSIMD(codelet_hc2cbdftv_4) (planner *p) { X(khc2c_register) (p, hc2cbdftv_4, &desc, HC2C_VIA_DFT); } #else /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 4 -dif -sign 1 -name hc2cbdftv_4 -include rdft/simd/hc2cbv.h */ /* * This function contains 15 FP additions, 6 FP multiplications, * (or, 15 additions, 6 multiplications, 0 fused multiply/add), * 22 stack variables, 0 constants, and 8 memory accesses */ #include "rdft/simd/hc2cbv.h" static void hc2cbdftv_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { { INT m; for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 6)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(16, rs)) { V T5, Tc, T9, Td, T2, T4, T3, T6, T8, T7, Tj, Ti, Th, Tk, Tl; V Ta, Te, T1, Tb, Tf, Tg; T2 = LD(&(Rp[0]), ms, &(Rp[0])); T3 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); T4 = VCONJ(T3); T5 = VSUB(T2, T4); Tc = VADD(T2, T4); T6 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); T7 = LD(&(Rm[0]), -ms, &(Rm[0])); T8 = VCONJ(T7); T9 = VBYI(VSUB(T6, T8)); Td = VADD(T6, T8); Tj = VADD(Tc, Td); Th = LDW(&(W[0])); Ti = VZMULI(Th, VADD(T5, T9)); Tk = VADD(Ti, Tj); ST(&(Rp[0]), Tk, ms, &(Rp[0])); Tl = VCONJ(VSUB(Tj, Ti)); ST(&(Rm[0]), Tl, -ms, &(Rm[0])); T1 = LDW(&(W[TWVL * 4])); Ta = VZMULI(T1, VSUB(T5, T9)); Tb = LDW(&(W[TWVL * 2])); Te = VZMUL(Tb, VSUB(Tc, Td)); Tf = VADD(Ta, Te); ST(&(Rp[WS(rs, 1)]), Tf, ms, &(Rp[WS(rs, 1)])); Tg = VCONJ(VSUB(Te, Ta)); ST(&(Rm[WS(rs, 1)]), Tg, -ms, &(Rm[WS(rs, 1)])); } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(1, 1), VTW(1, 2), VTW(1, 3), { TW_NEXT, VL, 0 } }; static const hc2c_desc desc = { 4, XSIMD_STRING("hc2cbdftv_4"), twinstr, &GENUS, { 15, 6, 0, 0 } }; void XSIMD(codelet_hc2cbdftv_4) (planner *p) { X(khc2c_register) (p, hc2cbdftv_4, &desc, HC2C_VIA_DFT); } #endif