/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Tue Sep 14 10:45:48 EDT 2021 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 10 -name t3fv_10 -include dft/simd/t3f.h */ /* * This function contains 57 FP additions, 52 FP multiplications, * (or, 39 additions, 34 multiplications, 18 fused multiply/add), * 41 stack variables, 4 constants, and 20 memory accesses */ #include "dft/simd/t3f.h" static void t3fv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP559016994, +0.559016994374947424102293417182819058860154590); DVK(KP618033988, +0.618033988749894848204586834365638117720309180); DVK(KP951056516, +0.951056516295153572116439333379382143405698634); DVK(KP250000000, +0.250000000000000000000000000000000000000000000); { INT m; R *x; x = ri; for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(10, rs)) { V T2, T3, T4, Ta, T5, T6, Tt, Td, Th; T2 = LDW(&(W[0])); T3 = LDW(&(W[TWVL * 2])); T4 = VZMUL(T2, T3); Ta = VZMULJ(T2, T3); T5 = LDW(&(W[TWVL * 4])); T6 = VZMULJ(T4, T5); Tt = VZMULJ(T3, T5); Td = VZMULJ(Ta, T5); Th = VZMULJ(T2, T5); { V T9, TJ, Ts, Ty, Tz, TN, TO, TP, Tg, Tm, Tn, TK, TL, TM, T1; V T8, T7; T1 = LD(&(x[0]), ms, &(x[0])); T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); T8 = VZMULJ(T6, T7); T9 = VSUB(T1, T8); TJ = VADD(T1, T8); { V Tp, Tx, Tr, Tv; { V To, Tw, Tq, Tu; To = LD(&(x[WS(rs, 4)]), ms, &(x[0])); Tp = VZMULJ(T4, To); Tw = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); Tx = VZMULJ(T2, Tw); Tq = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); Tr = VZMULJ(T5, Tq); Tu = LD(&(x[WS(rs, 6)]), ms, &(x[0])); Tv = VZMULJ(Tt, Tu); } Ts = VSUB(Tp, Tr); Ty = VSUB(Tv, Tx); Tz = VADD(Ts, Ty); TN = VADD(Tp, Tr); TO = VADD(Tv, Tx); TP = VADD(TN, TO); } { V Tc, Tl, Tf, Tj; { V Tb, Tk, Te, Ti; Tb = LD(&(x[WS(rs, 2)]), ms, &(x[0])); Tc = VZMULJ(Ta, Tb); Tk = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); Tl = VZMULJ(T3, Tk); Te = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); Tf = VZMULJ(Td, Te); Ti = LD(&(x[WS(rs, 8)]), ms, &(x[0])); Tj = VZMULJ(Th, Ti); } Tg = VSUB(Tc, Tf); Tm = VSUB(Tj, Tl); Tn = VADD(Tg, Tm); TK = VADD(Tc, Tf); TL = VADD(Tj, Tl); TM = VADD(TK, TL); } { V TC, TA, TB, TG, TI, TE, TF, TH, TD; TC = VSUB(Tn, Tz); TA = VADD(Tn, Tz); TB = VFNMS(LDK(KP250000000), TA, T9); TE = VSUB(Tg, Tm); TF = VSUB(Ts, Ty); TG = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TF, TE)); TI = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TE, TF)); ST(&(x[WS(rs, 5)]), VADD(T9, TA), ms, &(x[WS(rs, 1)])); TH = VFNMS(LDK(KP559016994), TC, TB); ST(&(x[WS(rs, 3)]), VFNMSI(TI, TH), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 7)]), VFMAI(TI, TH), ms, &(x[WS(rs, 1)])); TD = VFMA(LDK(KP559016994), TC, TB); ST(&(x[WS(rs, 1)]), VFNMSI(TG, TD), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 9)]), VFMAI(TG, TD), ms, &(x[WS(rs, 1)])); } { V TS, TQ, TR, TW, TY, TU, TV, TX, TT; TS = VSUB(TM, TP); TQ = VADD(TM, TP); TR = VFNMS(LDK(KP250000000), TQ, TJ); TU = VSUB(TN, TO); TV = VSUB(TK, TL); TW = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TV, TU)); TY = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TU, TV)); ST(&(x[0]), VADD(TJ, TQ), ms, &(x[0])); TX = VFMA(LDK(KP559016994), TS, TR); ST(&(x[WS(rs, 4)]), VFMAI(TY, TX), ms, &(x[0])); ST(&(x[WS(rs, 6)]), VFNMSI(TY, TX), ms, &(x[0])); TT = VFNMS(LDK(KP559016994), TS, TR); ST(&(x[WS(rs, 2)]), VFMAI(TW, TT), ms, &(x[0])); ST(&(x[WS(rs, 8)]), VFNMSI(TW, TT), ms, &(x[0])); } } } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 3), VTW(0, 9), { TW_NEXT, VL, 0 } }; static const ct_desc desc = { 10, XSIMD_STRING("t3fv_10"), twinstr, &GENUS, { 39, 34, 18, 0 }, 0, 0, 0 }; void XSIMD(codelet_t3fv_10) (planner *p) { X(kdft_dit_register) (p, t3fv_10, &desc); } #else /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 10 -name t3fv_10 -include dft/simd/t3f.h */ /* * This function contains 57 FP additions, 42 FP multiplications, * (or, 51 additions, 36 multiplications, 6 fused multiply/add), * 41 stack variables, 4 constants, and 20 memory accesses */ #include "dft/simd/t3f.h" static void t3fv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP587785252, +0.587785252292473129168705954639072768597652438); DVK(KP951056516, +0.951056516295153572116439333379382143405698634); DVK(KP250000000, +0.250000000000000000000000000000000000000000000); DVK(KP559016994, +0.559016994374947424102293417182819058860154590); { INT m; R *x; x = ri; for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(10, rs)) { V T1, T2, T3, Ti, T6, T7, Tx, Tb, To; T1 = LDW(&(W[0])); T2 = LDW(&(W[TWVL * 2])); T3 = VZMULJ(T1, T2); Ti = VZMUL(T1, T2); T6 = LDW(&(W[TWVL * 4])); T7 = VZMULJ(T3, T6); Tx = VZMULJ(Ti, T6); Tb = VZMULJ(T1, T6); To = VZMULJ(T2, T6); { V TA, TQ, Tn, Tt, Tu, TJ, TK, TS, Ta, Tg, Th, TM, TN, TR, Tw; V Tz, Ty; Tw = LD(&(x[0]), ms, &(x[0])); Ty = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); Tz = VZMULJ(Tx, Ty); TA = VSUB(Tw, Tz); TQ = VADD(Tw, Tz); { V Tk, Ts, Tm, Tq; { V Tj, Tr, Tl, Tp; Tj = LD(&(x[WS(rs, 4)]), ms, &(x[0])); Tk = VZMULJ(Ti, Tj); Tr = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); Ts = VZMULJ(T1, Tr); Tl = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); Tm = VZMULJ(T6, Tl); Tp = LD(&(x[WS(rs, 6)]), ms, &(x[0])); Tq = VZMULJ(To, Tp); } Tn = VSUB(Tk, Tm); Tt = VSUB(Tq, Ts); Tu = VADD(Tn, Tt); TJ = VADD(Tk, Tm); TK = VADD(Tq, Ts); TS = VADD(TJ, TK); } { V T5, Tf, T9, Td; { V T4, Te, T8, Tc; T4 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); T5 = VZMULJ(T3, T4); Te = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); Tf = VZMULJ(T2, Te); T8 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); T9 = VZMULJ(T7, T8); Tc = LD(&(x[WS(rs, 8)]), ms, &(x[0])); Td = VZMULJ(Tb, Tc); } Ta = VSUB(T5, T9); Tg = VSUB(Td, Tf); Th = VADD(Ta, Tg); TM = VADD(T5, T9); TN = VADD(Td, Tf); TR = VADD(TM, TN); } { V Tv, TB, TC, TG, TI, TE, TF, TH, TD; Tv = VMUL(LDK(KP559016994), VSUB(Th, Tu)); TB = VADD(Th, Tu); TC = VFNMS(LDK(KP250000000), TB, TA); TE = VSUB(Ta, Tg); TF = VSUB(Tn, Tt); TG = VBYI(VFMA(LDK(KP951056516), TE, VMUL(LDK(KP587785252), TF))); TI = VBYI(VFNMS(LDK(KP587785252), TE, VMUL(LDK(KP951056516), TF))); ST(&(x[WS(rs, 5)]), VADD(TA, TB), ms, &(x[WS(rs, 1)])); TH = VSUB(TC, Tv); ST(&(x[WS(rs, 3)]), VSUB(TH, TI), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 7)]), VADD(TI, TH), ms, &(x[WS(rs, 1)])); TD = VADD(Tv, TC); ST(&(x[WS(rs, 1)]), VSUB(TD, TG), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 9)]), VADD(TG, TD), ms, &(x[WS(rs, 1)])); } { V TV, TT, TU, TP, TX, TL, TO, TY, TW; TV = VMUL(LDK(KP559016994), VSUB(TR, TS)); TT = VADD(TR, TS); TU = VFNMS(LDK(KP250000000), TT, TQ); TL = VSUB(TJ, TK); TO = VSUB(TM, TN); TP = VBYI(VFNMS(LDK(KP587785252), TO, VMUL(LDK(KP951056516), TL))); TX = VBYI(VFMA(LDK(KP951056516), TO, VMUL(LDK(KP587785252), TL))); ST(&(x[0]), VADD(TQ, TT), ms, &(x[0])); TY = VADD(TV, TU); ST(&(x[WS(rs, 4)]), VADD(TX, TY), ms, &(x[0])); ST(&(x[WS(rs, 6)]), VSUB(TY, TX), ms, &(x[0])); TW = VSUB(TU, TV); ST(&(x[WS(rs, 2)]), VADD(TP, TW), ms, &(x[0])); ST(&(x[WS(rs, 8)]), VSUB(TW, TP), ms, &(x[0])); } } } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 3), VTW(0, 9), { TW_NEXT, VL, 0 } }; static const ct_desc desc = { 10, XSIMD_STRING("t3fv_10"), twinstr, &GENUS, { 51, 36, 6, 0 }, 0, 0, 0 }; void XSIMD(codelet_t3fv_10) (planner *p) { X(kdft_dit_register) (p, t3fv_10, &desc); } #endif