/** * Furnace Tracker - multi-system chiptune tracker * Copyright (C) 2021-2023 tildearrow and contributors * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "sm8521.h" #include "../engine.h" #include //#define rWrite(a,v) pendingWrites[a]=v; #define rWrite(a,v) if (!skipRegisterWrites) {writes.push(QueuedWrite(a,v)); if (dumpWrites) {addWrite(a,v);} } #define CHIP_DIVIDER 64 const char* regCheatSheetSM8521[]={ "SGC", "40", "SG0L", "42", "SG1L", "44", "SG0TL", "46", "SG0TH", "47", "SG1TL", "48", "SG1TH", "49", "SG2L", "4A", "SG2TL", "4C", "SG2TH", "4D", "SGDA", "4E", "SG0Wn", "60+n", "SG1Wn", "70+n", NULL }; const char** DivPlatformSM8521::getRegisterSheet() { return regCheatSheetSM8521; } void DivPlatformSM8521::acquire(short** buf, size_t len) { while (!writes.empty()) { QueuedWrite w=writes.front(); sm8521_write(&sm8521,w.addr,w.val); regPool[w.addr&0xff]=w.val; writes.pop(); } for (size_t h=0; hdata[oscBuf[i]->needle++]=sm8521.sg[i].base.out<<7; } oscBuf[2]->data[oscBuf[2]->needle++]=sm8521.noise.base.out<<7; } } void DivPlatformSM8521::updateWave(int ch) { if (ch<2) { const unsigned char temp=regPool[0x40]; rWrite(0x40,temp&~(1<0) { chan[i].antiClickPeriodCount+=(chipClock/MAX(parent->getCurHz(),1.0f)); chan[i].antiClickWavePos+=chan[i].antiClickPeriodCount/chan[i].freq; chan[i].antiClickPeriodCount%=chan[i].freq; } */ chan[i].std.next(); if (chan[i].std.vol.had) { chan[i].outVol=((chan[i].vol&31)*MIN(31,chan[i].std.vol.val))>>5; if (!isMuted[i]) { chan[i].volumeChanged=true; } } if (NEW_ARP_STRAT) { chan[i].handleArp(); } else if (chan[i].std.arp.had) { if (!chan[i].inPorta) { chan[i].baseFreq=NOTE_PERIODIC(parent->calcArp(chan[i].note,chan[i].std.arp.val)); } chan[i].freqChanged=true; } if (chan[i].volumeChanged) { if (isMuted[i]) { rWrite(volMap[i],0); } else { rWrite(volMap[i],chan[i].outVol&0x1f); } chan[i].volumeChanged=false; } if (chan[i].std.wave.had) { if (chan[i].wave!=chan[i].std.wave.val || chan[i].ws.activeChanged()) { chan[i].wave=chan[i].std.wave.val; chan[i].ws.changeWave1(chan[i].wave); if (!chan[i].keyOff) chan[i].keyOn=true; } } if (chan[i].std.pitch.had) { if (chan[i].std.pitch.mode) { chan[i].pitch2+=chan[i].std.pitch.val; CLAMP_VAR(chan[i].pitch2,-32768,32767); } else { chan[i].pitch2=chan[i].std.pitch.val; } chan[i].freqChanged=true; } if (chan[i].std.phaseReset.had && chan[i].std.phaseReset.val==1) { chan[i].antiClickWavePos=0; chan[i].antiClickPeriodCount=0; } if (chan[i].active) { if (chan[i].ws.tick() || (chan[i].std.phaseReset.had && chan[i].std.phaseReset.val==1)) { updateWave(i); } } if (chan[i].freqChanged || chan[i].keyOn || chan[i].keyOff) { chan[i].freq=parent->calcFreq(chan[i].baseFreq,chan[i].pitch,chan[i].fixedArp?chan[i].baseNoteOverride:chan[i].arpOff,chan[i].fixedArp,true,0,chan[i].pitch2,chipClock,CHIP_DIVIDER)-1; if (chan[i].freq<1) chan[i].freq=1; if (chan[i].freq>4095) chan[i].freq=4095; rWrite(freqMap[i][0],chan[i].freq>>8); rWrite(freqMap[i][1],chan[i].freq&0xff); if (chan[i].keyOn) { } if (chan[i].keyOff) { } if (chan[i].keyOn) chan[i].keyOn=false; if (chan[i].keyOff) chan[i].keyOff=false; chan[i].freqChanged=false; } if (!isMuted[i] && chan[i].active) { keyState|=(1<getIns(chan[c.chan].ins,DIV_INS_SM8521); if (c.value!=DIV_NOTE_NULL) { chan[c.chan].baseFreq=NOTE_PERIODIC(c.value); chan[c.chan].freqChanged=true; chan[c.chan].note=c.value; } chan[c.chan].active=true; chan[c.chan].keyOn=true; chan[c.chan].macroInit(ins); if (!parent->song.brokenOutVol && !chan[c.chan].std.vol.will) { chan[c.chan].outVol=chan[c.chan].vol; } if (chan[c.chan].wave<0) { chan[c.chan].wave=0; chan[c.chan].ws.changeWave1(chan[c.chan].wave); } chan[c.chan].ws.init(ins,32,15,chan[c.chan].insChanged); chan[c.chan].insChanged=false; if (!isMuted[c.chan]) { chan[c.chan].volumeChanged=true; } break; } case DIV_CMD_NOTE_OFF: chan[c.chan].active=false; chan[c.chan].keyOff=true; chan[c.chan].macroInit(NULL); break; case DIV_CMD_NOTE_OFF_ENV: case DIV_CMD_ENV_RELEASE: chan[c.chan].std.release(); break; case DIV_CMD_INSTRUMENT: if (chan[c.chan].ins!=c.value || c.value2==1) { chan[c.chan].ins=c.value; chan[c.chan].insChanged=true; } break; case DIV_CMD_VOLUME: if (chan[c.chan].vol!=c.value) { chan[c.chan].vol=c.value; if (!chan[c.chan].std.vol.has) { chan[c.chan].outVol=c.value; if (!isMuted[c.chan]) { chan[c.chan].volumeChanged=true; } } } break; case DIV_CMD_GET_VOLUME: if (chan[c.chan].std.vol.has) { return chan[c.chan].vol; } return chan[c.chan].outVol; break; case DIV_CMD_PITCH: chan[c.chan].pitch=c.value; chan[c.chan].freqChanged=true; break; case DIV_CMD_WAVE: chan[c.chan].wave=c.value; chan[c.chan].ws.changeWave1(chan[c.chan].wave); chan[c.chan].keyOn=true; break; case DIV_CMD_NOTE_PORTA: { int destFreq=NOTE_PERIODIC(c.value2); bool return2=false; if (destFreq>chan[c.chan].baseFreq) { chan[c.chan].baseFreq+=c.value*((parent->song.linearPitch==2)?1:8); if (chan[c.chan].baseFreq>=destFreq) { chan[c.chan].baseFreq=destFreq; return2=true; } } else { chan[c.chan].baseFreq-=c.value*((parent->song.linearPitch==2)?1:8); if (chan[c.chan].baseFreq<=destFreq) { chan[c.chan].baseFreq=destFreq; return2=true; } } chan[c.chan].freqChanged=true; if (return2) { chan[c.chan].inPorta=false; return 2; } break; } case DIV_CMD_LEGATO: chan[c.chan].baseFreq=NOTE_PERIODIC(c.value+((HACKY_LEGATO_MESS)?(chan[c.chan].std.arp.val):(0))); chan[c.chan].freqChanged=true; chan[c.chan].note=c.value; break; case DIV_CMD_PRE_PORTA: if (chan[c.chan].active && c.value2) { if (parent->song.resetMacroOnPorta) chan[c.chan].macroInit(parent->getIns(chan[c.chan].ins,DIV_INS_SM8521)); } if (!chan[c.chan].inPorta && c.value && !parent->song.brokenPortaArp && chan[c.chan].std.arp.will && !NEW_ARP_STRAT) chan[c.chan].baseFreq=NOTE_PERIODIC(chan[c.chan].note); chan[c.chan].inPorta=c.value; break; case DIV_CMD_GET_VOLMAX: return 31; break; case DIV_CMD_MACRO_OFF: chan[c.chan].std.mask(c.value,true); break; case DIV_CMD_MACRO_ON: chan[c.chan].std.mask(c.value,false); break; case DIV_ALWAYS_SET_VOLUME: return 1; break; default: break; } return 1; } void DivPlatformSM8521::muteChannel(int ch, bool mute) { isMuted[ch]=mute; chan[ch].volumeChanged=true; if (mute) { rWrite(0x40,regPool[0x40]&~(1< fCLK(/2) -> Function blocks (/2) for (int i=0; i<3; i++) { oscBuf[i]->rate=rate; } } void DivPlatformSM8521::poke(unsigned int addr, unsigned short val) { rWrite(addr,val); } void DivPlatformSM8521::poke(std::vector& wlist) { for (DivRegWrite& i: wlist) rWrite(i.addr,i.val); } int DivPlatformSM8521::init(DivEngine* p, int channels, int sugRate, const DivConfig& flags) { parent=p; dumpWrites=false; skipRegisterWrites=false; for (int i=0; i<3; i++) { isMuted[i]=false; oscBuf[i]=new DivDispatchOscBuffer; } setFlags(flags); reset(); return 6; } void DivPlatformSM8521::quit() { for (int i=0; i<3; i++) { delete oscBuf[i]; } } DivPlatformSM8521::~DivPlatformSM8521() { }