/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * Generic128d added by Romain Dolbeau, and turned into simd-generic128.h * with single & double precision by Erik Lindahl. * Romain Dolbeau hereby places his modifications in the public domain. * Erik Lindahl hereby places his modifications in the public domain. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD) # error "Generic simd128 only works in single or double precision" #endif #define SIMD_SUFFIX _generic_simd128 /* for renaming */ #ifdef FFTW_SINGLE # define DS(d,s) s /* single-precision option */ # define VDUPL(x) (V){x[0],x[0],x[2],x[2]} # define VDUPH(x) (V){x[1],x[1],x[3],x[3]} # define DVK(var, val) V var = {val,val,val,val} #else # define DS(d,s) d /* double-precision option */ # define VDUPL(x) (V){x[0],x[0]} # define VDUPH(x) (V){x[1],x[1]} # define DVK(var, val) V var = {val, val} #endif #define VL DS(1,2) /* SIMD vector length, in term of complex numbers */ #define SIMD_VSTRIDE_OKA(x) DS(SIMD_STRIDE_OKA(x),((x) == 2)) #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK typedef DS(double,float) V __attribute__ ((vector_size(16))); #define VADD(a,b) ((a)+(b)) #define VSUB(a,b) ((a)-(b)) #define VMUL(a,b) ((a)*(b)) #define LDK(x) x static inline V LDA(const R *x, INT ivs, const R *aligned_like) { (void)aligned_like; /* UNUSED */ (void)ivs; /* UNUSED */ return *(const V *)x; } static inline void STA(R *x, V v, INT ovs, const R *aligned_like) { (void)aligned_like; /* UNUSED */ (void)ovs; /* UNUSED */ *(V *)x = v; } static inline V LD(const R *x, INT ivs, const R *aligned_like) { (void)aligned_like; /* UNUSED */ V res; res[0] = x[0]; res[1] = x[1]; #ifdef FFTW_SINGLE res[2] = x[ivs]; res[3] = x[ivs+1]; #endif return res; } #ifdef FFTW_SINGLE /* ST has to be separate due to the storage hack requiring reverse order */ static inline void ST(R *x, V v, INT ovs, const R *aligned_like) { (void)aligned_like; /* UNUSED */ (void)ovs; /* UNUSED */ *(x + ovs ) = v[2]; *(x + ovs + 1) = v[3]; *(x ) = v[0]; *(x + 1) = v[1]; } #else /* FFTW_DOUBLE */ # define ST STA #endif #ifdef FFTW_SINGLE #define STM2 ST #define STN2(x, v0, v1, ovs) /* nop */ static inline void STN4(R *x, V v0, V v1, V v2, V v3, INT ovs) { *(x ) = v0[0]; *(x + 1) = v1[0]; *(x + 2) = v2[0]; *(x + 3) = v3[0]; *(x + ovs ) = v0[1]; *(x + ovs + 1) = v1[1]; *(x + ovs + 2) = v2[1]; *(x + ovs + 3) = v3[1]; *(x + 2 * ovs ) = v0[2]; *(x + 2 * ovs + 1) = v1[2]; *(x + 2 * ovs + 2) = v2[2]; *(x + 2 * ovs + 3) = v3[2]; *(x + 3 * ovs ) = v0[3]; *(x + 3 * ovs + 1) = v1[3]; *(x + 3 * ovs + 2) = v2[3]; *(x + 3 * ovs + 3) = v3[3]; } #define STM4(x, v, ovs, aligned_like) /* no-op */ #else /* FFTW_DOUBLE */ #define STM2 STA #define STN2(x, v0, v1, ovs) /* nop */ static inline void STM4(R *x, V v, INT ovs, const R *aligned_like) { (void)aligned_like; /* UNUSED */ *(x) = v[0]; *(x+ovs) = v[1]; } # define STN4(x, v0, v1, v2, v3, ovs) /* nothing */ #endif static inline V FLIP_RI(V x) { #ifdef FFTW_SINGLE return (V){x[1],x[0],x[3],x[2]}; #else return (V){x[1],x[0]}; #endif } static inline V VCONJ(V x) { #ifdef FFTW_SINGLE return (V){x[0],-x[1],x[2],-x[3]}; #else return (V){x[0],-x[1]}; #endif } static inline V VBYI(V x) { x = VCONJ(x); x = FLIP_RI(x); return x; } /* FMA support */ #define VFMA(a, b, c) VADD(c, VMUL(a, b)) #define VFNMS(a, b, c) VSUB(c, VMUL(a, b)) #define VFMS(a, b, c) VSUB(VMUL(a, b), c) #define VFMAI(b, c) VADD(c, VBYI(b)) #define VFNMSI(b, c) VSUB(c, VBYI(b)) #define VFMACONJ(b,c) VADD(VCONJ(b),c) #define VFMSCONJ(b,c) VSUB(VCONJ(b),c) #define VFNMSCONJ(b,c) VSUB(c, VCONJ(b)) static inline V VZMUL(V tx, V sr) { V tr = VDUPL(tx); V ti = VDUPH(tx); tr = VMUL(sr, tr); sr = VBYI(sr); return VFMA(ti, sr, tr); } static inline V VZMULJ(V tx, V sr) { V tr = VDUPL(tx); V ti = VDUPH(tx); tr = VMUL(sr, tr); sr = VBYI(sr); return VFNMS(ti, sr, tr); } static inline V VZMULI(V tx, V sr) { V tr = VDUPL(tx); V ti = VDUPH(tx); ti = VMUL(ti, sr); sr = VBYI(sr); return VFMS(tr, sr, ti); } static inline V VZMULIJ(V tx, V sr) { V tr = VDUPL(tx); V ti = VDUPH(tx); ti = VMUL(ti, sr); sr = VBYI(sr); return VFMA(tr, sr, ti); } /* twiddle storage #1: compact, slower */ #ifdef FFTW_SINGLE # define VTW1(v,x) \ {TW_CEXP, v, x}, {TW_CEXP, v+1, x} static inline V BYTW1(const R *t, V sr) { return VZMUL(LDA(t, 2, t), sr); } static inline V BYTWJ1(const R *t, V sr) { return VZMULJ(LDA(t, 2, t), sr); } #else /* !FFTW_SINGLE */ # define VTW1(v,x) {TW_CEXP, v, x} static inline V BYTW1(const R *t, V sr) { V tx = LD(t, 1, t); return VZMUL(tx, sr); } static inline V BYTWJ1(const R *t, V sr) { V tx = LD(t, 1, t); return VZMULJ(tx, sr); } #endif #define TWVL1 (VL) /* twiddle storage #2: twice the space, faster (when in cache) */ #ifdef FFTW_SINGLE # define VTW2(v,x) \ {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \ {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x} #else /* !FFTW_SINGLE */ # define VTW2(v,x) \ {TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x} #endif #define TWVL2 (2 * VL) static inline V BYTW2(const R *t, V sr) { const V *twp = (const V *)t; V si = FLIP_RI(sr); V tr = twp[0], ti = twp[1]; return VFMA(tr, sr, VMUL(ti, si)); } static inline V BYTWJ2(const R *t, V sr) { const V *twp = (const V *)t; V si = FLIP_RI(sr); V tr = twp[0], ti = twp[1]; return VFNMS(ti, si, VMUL(tr, sr)); } /* twiddle storage #3 */ #ifdef FFTW_SINGLE # define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x} # define TWVL3 (VL) #else # define VTW3(v,x) VTW1(v,x) # define TWVL3 TWVL1 #endif /* twiddle storage for split arrays */ #ifdef FFTW_SINGLE # define VTWS(v,x) \ {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \ {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x} #else # define VTWS(v,x) \ {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x} #endif #define TWVLS (2 * VL) #define VLEAVE() /* nothing */ #include "simd-common.h"