/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Tue Sep 14 10:45:28 EDT 2021 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 10 -name t1fuv_10 -include dft/simd/t1fu.h */ /* * This function contains 51 FP additions, 40 FP multiplications, * (or, 33 additions, 22 multiplications, 18 fused multiply/add), * 32 stack variables, 4 constants, and 20 memory accesses */ #include "dft/simd/t1fu.h" static void t1fuv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP559016994, +0.559016994374947424102293417182819058860154590); DVK(KP618033988, +0.618033988749894848204586834365638117720309180); DVK(KP951056516, +0.951056516295153572116439333379382143405698634); DVK(KP250000000, +0.250000000000000000000000000000000000000000000); { INT m; R *x; x = ri; for (m = mb, W = W + (mb * ((TWVL / VL) * 18)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(10, rs)) { V T4, TA, Tk, Tp, Tq, TE, TF, TG, T9, Te, Tf, TB, TC, TD, T1; V T3, T2; T1 = LD(&(x[0]), ms, &(x[0])); T2 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); T3 = BYTWJ(&(W[TWVL * 8]), T2); T4 = VSUB(T1, T3); TA = VADD(T1, T3); { V Th, To, Tj, Tm; { V Tg, Tn, Ti, Tl; Tg = LD(&(x[WS(rs, 4)]), ms, &(x[0])); Th = BYTWJ(&(W[TWVL * 6]), Tg); Tn = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); To = BYTWJ(&(W[0]), Tn); Ti = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); Tj = BYTWJ(&(W[TWVL * 16]), Ti); Tl = LD(&(x[WS(rs, 6)]), ms, &(x[0])); Tm = BYTWJ(&(W[TWVL * 10]), Tl); } Tk = VSUB(Th, Tj); Tp = VSUB(Tm, To); Tq = VADD(Tk, Tp); TE = VADD(Th, Tj); TF = VADD(Tm, To); TG = VADD(TE, TF); } { V T6, Td, T8, Tb; { V T5, Tc, T7, Ta; T5 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); T6 = BYTWJ(&(W[TWVL * 2]), T5); Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); Td = BYTWJ(&(W[TWVL * 4]), Tc); T7 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); T8 = BYTWJ(&(W[TWVL * 12]), T7); Ta = LD(&(x[WS(rs, 8)]), ms, &(x[0])); Tb = BYTWJ(&(W[TWVL * 14]), Ta); } T9 = VSUB(T6, T8); Te = VSUB(Tb, Td); Tf = VADD(T9, Te); TB = VADD(T6, T8); TC = VADD(Tb, Td); TD = VADD(TB, TC); } { V Tt, Tr, Ts, Tx, Tz, Tv, Tw, Ty, Tu; Tt = VSUB(Tf, Tq); Tr = VADD(Tf, Tq); Ts = VFNMS(LDK(KP250000000), Tr, T4); Tv = VSUB(T9, Te); Tw = VSUB(Tk, Tp); Tx = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tw, Tv)); Tz = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tv, Tw)); ST(&(x[WS(rs, 5)]), VADD(T4, Tr), ms, &(x[WS(rs, 1)])); Ty = VFNMS(LDK(KP559016994), Tt, Ts); ST(&(x[WS(rs, 3)]), VFNMSI(Tz, Ty), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 7)]), VFMAI(Tz, Ty), ms, &(x[WS(rs, 1)])); Tu = VFMA(LDK(KP559016994), Tt, Ts); ST(&(x[WS(rs, 1)]), VFNMSI(Tx, Tu), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 9)]), VFMAI(Tx, Tu), ms, &(x[WS(rs, 1)])); } { V TJ, TH, TI, TN, TP, TL, TM, TO, TK; TJ = VSUB(TD, TG); TH = VADD(TD, TG); TI = VFNMS(LDK(KP250000000), TH, TA); TL = VSUB(TE, TF); TM = VSUB(TB, TC); TN = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TM, TL)); TP = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TL, TM)); ST(&(x[0]), VADD(TA, TH), ms, &(x[0])); TO = VFMA(LDK(KP559016994), TJ, TI); ST(&(x[WS(rs, 4)]), VFMAI(TP, TO), ms, &(x[0])); ST(&(x[WS(rs, 6)]), VFNMSI(TP, TO), ms, &(x[0])); TK = VFNMS(LDK(KP559016994), TJ, TI); ST(&(x[WS(rs, 2)]), VFMAI(TN, TK), ms, &(x[0])); ST(&(x[WS(rs, 8)]), VFNMSI(TN, TK), ms, &(x[0])); } } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 2), VTW(0, 3), VTW(0, 4), VTW(0, 5), VTW(0, 6), VTW(0, 7), VTW(0, 8), VTW(0, 9), { TW_NEXT, VL, 0 } }; static const ct_desc desc = { 10, XSIMD_STRING("t1fuv_10"), twinstr, &GENUS, { 33, 22, 18, 0 }, 0, 0, 0 }; void XSIMD(codelet_t1fuv_10) (planner *p) { X(kdft_dit_register) (p, t1fuv_10, &desc); } #else /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 10 -name t1fuv_10 -include dft/simd/t1fu.h */ /* * This function contains 51 FP additions, 30 FP multiplications, * (or, 45 additions, 24 multiplications, 6 fused multiply/add), * 32 stack variables, 4 constants, and 20 memory accesses */ #include "dft/simd/t1fu.h" static void t1fuv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP587785252, +0.587785252292473129168705954639072768597652438); DVK(KP951056516, +0.951056516295153572116439333379382143405698634); DVK(KP250000000, +0.250000000000000000000000000000000000000000000); DVK(KP559016994, +0.559016994374947424102293417182819058860154590); { INT m; R *x; x = ri; for (m = mb, W = W + (mb * ((TWVL / VL) * 18)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(10, rs)) { V Tr, TH, Tg, Tl, Tm, TA, TB, TJ, T5, Ta, Tb, TD, TE, TI, To; V Tq, Tp; To = LD(&(x[0]), ms, &(x[0])); Tp = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); Tq = BYTWJ(&(W[TWVL * 8]), Tp); Tr = VSUB(To, Tq); TH = VADD(To, Tq); { V Td, Tk, Tf, Ti; { V Tc, Tj, Te, Th; Tc = LD(&(x[WS(rs, 4)]), ms, &(x[0])); Td = BYTWJ(&(W[TWVL * 6]), Tc); Tj = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); Tk = BYTWJ(&(W[0]), Tj); Te = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); Tf = BYTWJ(&(W[TWVL * 16]), Te); Th = LD(&(x[WS(rs, 6)]), ms, &(x[0])); Ti = BYTWJ(&(W[TWVL * 10]), Th); } Tg = VSUB(Td, Tf); Tl = VSUB(Ti, Tk); Tm = VADD(Tg, Tl); TA = VADD(Td, Tf); TB = VADD(Ti, Tk); TJ = VADD(TA, TB); } { V T2, T9, T4, T7; { V T1, T8, T3, T6; T1 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); T2 = BYTWJ(&(W[TWVL * 2]), T1); T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); T9 = BYTWJ(&(W[TWVL * 4]), T8); T3 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); T4 = BYTWJ(&(W[TWVL * 12]), T3); T6 = LD(&(x[WS(rs, 8)]), ms, &(x[0])); T7 = BYTWJ(&(W[TWVL * 14]), T6); } T5 = VSUB(T2, T4); Ta = VSUB(T7, T9); Tb = VADD(T5, Ta); TD = VADD(T2, T4); TE = VADD(T7, T9); TI = VADD(TD, TE); } { V Tn, Ts, Tt, Tx, Tz, Tv, Tw, Ty, Tu; Tn = VMUL(LDK(KP559016994), VSUB(Tb, Tm)); Ts = VADD(Tb, Tm); Tt = VFNMS(LDK(KP250000000), Ts, Tr); Tv = VSUB(T5, Ta); Tw = VSUB(Tg, Tl); Tx = VBYI(VFMA(LDK(KP951056516), Tv, VMUL(LDK(KP587785252), Tw))); Tz = VBYI(VFNMS(LDK(KP587785252), Tv, VMUL(LDK(KP951056516), Tw))); ST(&(x[WS(rs, 5)]), VADD(Tr, Ts), ms, &(x[WS(rs, 1)])); Ty = VSUB(Tt, Tn); ST(&(x[WS(rs, 3)]), VSUB(Ty, Tz), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 7)]), VADD(Tz, Ty), ms, &(x[WS(rs, 1)])); Tu = VADD(Tn, Tt); ST(&(x[WS(rs, 1)]), VSUB(Tu, Tx), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 9)]), VADD(Tx, Tu), ms, &(x[WS(rs, 1)])); } { V TM, TK, TL, TG, TO, TC, TF, TP, TN; TM = VMUL(LDK(KP559016994), VSUB(TI, TJ)); TK = VADD(TI, TJ); TL = VFNMS(LDK(KP250000000), TK, TH); TC = VSUB(TA, TB); TF = VSUB(TD, TE); TG = VBYI(VFNMS(LDK(KP587785252), TF, VMUL(LDK(KP951056516), TC))); TO = VBYI(VFMA(LDK(KP951056516), TF, VMUL(LDK(KP587785252), TC))); ST(&(x[0]), VADD(TH, TK), ms, &(x[0])); TP = VADD(TM, TL); ST(&(x[WS(rs, 4)]), VADD(TO, TP), ms, &(x[0])); ST(&(x[WS(rs, 6)]), VSUB(TP, TO), ms, &(x[0])); TN = VSUB(TL, TM); ST(&(x[WS(rs, 2)]), VADD(TG, TN), ms, &(x[0])); ST(&(x[WS(rs, 8)]), VSUB(TN, TG), ms, &(x[0])); } } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 2), VTW(0, 3), VTW(0, 4), VTW(0, 5), VTW(0, 6), VTW(0, 7), VTW(0, 8), VTW(0, 9), { TW_NEXT, VL, 0 } }; static const ct_desc desc = { 10, XSIMD_STRING("t1fuv_10"), twinstr, &GENUS, { 45, 24, 6, 0 }, 0, 0, 0 }; void XSIMD(codelet_t1fuv_10) (planner *p) { X(kdft_dit_register) (p, t1fuv_10, &desc); } #endif