/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Tue Sep 14 10:45:12 EDT 2021 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name n2fv_8 -with-ostride 2 -include dft/simd/n2f.h -store-multiple 2 */ /* * This function contains 26 FP additions, 10 FP multiplications, * (or, 16 additions, 0 multiplications, 10 fused multiply/add), * 24 stack variables, 1 constants, and 20 memory accesses */ #include "dft/simd/n2f.h" static void n2fv_8(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { DVK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT i; const R *xi; R *xo; xi = ri; xo = ro; for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(16, is), MAKE_VOLATILE_STRIDE(16, os)) { V T3, Tj, Te, Tk, Ta, Tn, Tf, Tm, Tr, Tu; { V T1, T2, Tc, Td; T1 = LD(&(xi[0]), ivs, &(xi[0])); T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); T3 = VSUB(T1, T2); Tj = VADD(T1, T2); Tc = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); Td = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); Te = VSUB(Tc, Td); Tk = VADD(Tc, Td); { V T4, T5, T6, T7, T8, T9; T4 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); T5 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); T6 = VSUB(T4, T5); T7 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); T8 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); T9 = VSUB(T7, T8); Ta = VADD(T6, T9); Tn = VADD(T7, T8); Tf = VSUB(T9, T6); Tm = VADD(T4, T5); } } { V Ts, Tb, Tg, Tp, Tq, Tt; Tb = VFMA(LDK(KP707106781), Ta, T3); Tg = VFNMS(LDK(KP707106781), Tf, Te); Tr = VFNMSI(Tg, Tb); STM2(&(xo[2]), Tr, ovs, &(xo[2])); Ts = VFMAI(Tg, Tb); STM2(&(xo[14]), Ts, ovs, &(xo[2])); Tp = VSUB(Tj, Tk); Tq = VSUB(Tn, Tm); Tt = VFNMSI(Tq, Tp); STM2(&(xo[12]), Tt, ovs, &(xo[0])); STN2(&(xo[12]), Tt, Ts, ovs); Tu = VFMAI(Tq, Tp); STM2(&(xo[4]), Tu, ovs, &(xo[0])); } { V Tv, Th, Ti, Tw; Th = VFNMS(LDK(KP707106781), Ta, T3); Ti = VFMA(LDK(KP707106781), Tf, Te); Tv = VFNMSI(Ti, Th); STM2(&(xo[10]), Tv, ovs, &(xo[2])); Tw = VFMAI(Ti, Th); STM2(&(xo[6]), Tw, ovs, &(xo[2])); STN2(&(xo[4]), Tu, Tw, ovs); { V Tl, To, Tx, Ty; Tl = VADD(Tj, Tk); To = VADD(Tm, Tn); Tx = VSUB(Tl, To); STM2(&(xo[8]), Tx, ovs, &(xo[0])); STN2(&(xo[8]), Tx, Tv, ovs); Ty = VADD(Tl, To); STM2(&(xo[0]), Ty, ovs, &(xo[0])); STN2(&(xo[0]), Ty, Tr, ovs); } } } } VLEAVE(); } static const kdft_desc desc = { 8, XSIMD_STRING("n2fv_8"), { 16, 0, 10, 0 }, &GENUS, 0, 2, 0, 0 }; void XSIMD(codelet_n2fv_8) (planner *p) { X(kdft_register) (p, n2fv_8, &desc); } #else /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name n2fv_8 -with-ostride 2 -include dft/simd/n2f.h -store-multiple 2 */ /* * This function contains 26 FP additions, 2 FP multiplications, * (or, 26 additions, 2 multiplications, 0 fused multiply/add), * 24 stack variables, 1 constants, and 20 memory accesses */ #include "dft/simd/n2f.h" static void n2fv_8(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { DVK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT i; const R *xi; R *xo; xi = ri; xo = ro; for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(16, is), MAKE_VOLATILE_STRIDE(16, os)) { V T3, Tj, Tf, Tk, Ta, Tn, Tc, Tm, Ts, Tu; { V T1, T2, Td, Te; T1 = LD(&(xi[0]), ivs, &(xi[0])); T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); T3 = VSUB(T1, T2); Tj = VADD(T1, T2); Td = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); Te = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); Tf = VSUB(Td, Te); Tk = VADD(Td, Te); { V T4, T5, T6, T7, T8, T9; T4 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); T5 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); T6 = VSUB(T4, T5); T7 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); T8 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); T9 = VSUB(T7, T8); Ta = VMUL(LDK(KP707106781), VADD(T6, T9)); Tn = VADD(T7, T8); Tc = VMUL(LDK(KP707106781), VSUB(T9, T6)); Tm = VADD(T4, T5); } } { V Tr, Tb, Tg, Tp, Tq, Tt; Tb = VADD(T3, Ta); Tg = VBYI(VSUB(Tc, Tf)); Tr = VSUB(Tb, Tg); STM2(&(xo[14]), Tr, ovs, &(xo[2])); Ts = VADD(Tb, Tg); STM2(&(xo[2]), Ts, ovs, &(xo[2])); Tp = VSUB(Tj, Tk); Tq = VBYI(VSUB(Tn, Tm)); Tt = VSUB(Tp, Tq); STM2(&(xo[12]), Tt, ovs, &(xo[0])); STN2(&(xo[12]), Tt, Tr, ovs); Tu = VADD(Tp, Tq); STM2(&(xo[4]), Tu, ovs, &(xo[0])); } { V Tv, Th, Ti, Tw; Th = VSUB(T3, Ta); Ti = VBYI(VADD(Tf, Tc)); Tv = VSUB(Th, Ti); STM2(&(xo[10]), Tv, ovs, &(xo[2])); Tw = VADD(Th, Ti); STM2(&(xo[6]), Tw, ovs, &(xo[2])); STN2(&(xo[4]), Tu, Tw, ovs); { V Tl, To, Tx, Ty; Tl = VADD(Tj, Tk); To = VADD(Tm, Tn); Tx = VSUB(Tl, To); STM2(&(xo[8]), Tx, ovs, &(xo[0])); STN2(&(xo[8]), Tx, Tv, ovs); Ty = VADD(Tl, To); STM2(&(xo[0]), Ty, ovs, &(xo[0])); STN2(&(xo[0]), Ty, Ts, ovs); } } } } VLEAVE(); } static const kdft_desc desc = { 8, XSIMD_STRING("n2fv_8"), { 26, 2, 0, 0 }, &GENUS, 0, 2, 0, 0 }; void XSIMD(codelet_n2fv_8) (planner *p) { X(kdft_register) (p, n2fv_8, &desc); } #endif