/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Tue Sep 14 10:45:12 EDT 2021 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 6 -name n2fv_6 -with-ostride 2 -include dft/simd/n2f.h -store-multiple 2 */ /* * This function contains 18 FP additions, 8 FP multiplications, * (or, 12 additions, 2 multiplications, 6 fused multiply/add), * 25 stack variables, 2 constants, and 15 memory accesses */ #include "dft/simd/n2f.h" static void n2fv_6(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { DVK(KP866025403, +0.866025403784438646763723170752936183471402627); DVK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT i; const R *xi; R *xo; xi = ri; xo = ro; for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(12, is), MAKE_VOLATILE_STRIDE(12, os)) { V T3, Td, T6, Te, T9, Tf, Ta, Tg, T1, T2, Tj, Tk; T1 = LD(&(xi[0]), ivs, &(xi[0])); T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); T3 = VSUB(T1, T2); Td = VADD(T1, T2); { V T4, T5, T7, T8; T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); T5 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); T6 = VSUB(T4, T5); Te = VADD(T4, T5); T7 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); T8 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); T9 = VSUB(T7, T8); Tf = VADD(T7, T8); } Ta = VADD(T6, T9); Tg = VADD(Te, Tf); Tj = VADD(T3, Ta); STM2(&(xo[6]), Tj, ovs, &(xo[2])); Tk = VADD(Td, Tg); STM2(&(xo[0]), Tk, ovs, &(xo[0])); { V Tl, Tb, Tc, Tm; Tb = VFNMS(LDK(KP500000000), Ta, T3); Tc = VMUL(LDK(KP866025403), VSUB(T9, T6)); Tl = VFNMSI(Tc, Tb); STM2(&(xo[10]), Tl, ovs, &(xo[2])); Tm = VFMAI(Tc, Tb); STM2(&(xo[2]), Tm, ovs, &(xo[2])); STN2(&(xo[0]), Tk, Tm, ovs); { V Th, Ti, Tn, To; Th = VFNMS(LDK(KP500000000), Tg, Td); Ti = VMUL(LDK(KP866025403), VSUB(Tf, Te)); Tn = VFNMSI(Ti, Th); STM2(&(xo[4]), Tn, ovs, &(xo[0])); STN2(&(xo[4]), Tn, Tj, ovs); To = VFMAI(Ti, Th); STM2(&(xo[8]), To, ovs, &(xo[0])); STN2(&(xo[8]), To, Tl, ovs); } } } } VLEAVE(); } static const kdft_desc desc = { 6, XSIMD_STRING("n2fv_6"), { 12, 2, 6, 0 }, &GENUS, 0, 2, 0, 0 }; void XSIMD(codelet_n2fv_6) (planner *p) { X(kdft_register) (p, n2fv_6, &desc); } #else /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 6 -name n2fv_6 -with-ostride 2 -include dft/simd/n2f.h -store-multiple 2 */ /* * This function contains 18 FP additions, 4 FP multiplications, * (or, 16 additions, 2 multiplications, 2 fused multiply/add), * 25 stack variables, 2 constants, and 15 memory accesses */ #include "dft/simd/n2f.h" static void n2fv_6(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { DVK(KP866025403, +0.866025403784438646763723170752936183471402627); DVK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT i; const R *xi; R *xo; xi = ri; xo = ro; for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(12, is), MAKE_VOLATILE_STRIDE(12, os)) { V T3, Td, T6, Te, T9, Tf, Ta, Tg, T1, T2, Tj, Tk; T1 = LD(&(xi[0]), ivs, &(xi[0])); T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); T3 = VSUB(T1, T2); Td = VADD(T1, T2); { V T4, T5, T7, T8; T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); T5 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); T6 = VSUB(T4, T5); Te = VADD(T4, T5); T7 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); T8 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); T9 = VSUB(T7, T8); Tf = VADD(T7, T8); } Ta = VADD(T6, T9); Tg = VADD(Te, Tf); Tj = VADD(T3, Ta); STM2(&(xo[6]), Tj, ovs, &(xo[2])); Tk = VADD(Td, Tg); STM2(&(xo[0]), Tk, ovs, &(xo[0])); { V Tl, Tb, Tc, Tm; Tb = VFNMS(LDK(KP500000000), Ta, T3); Tc = VBYI(VMUL(LDK(KP866025403), VSUB(T9, T6))); Tl = VSUB(Tb, Tc); STM2(&(xo[10]), Tl, ovs, &(xo[2])); Tm = VADD(Tb, Tc); STM2(&(xo[2]), Tm, ovs, &(xo[2])); STN2(&(xo[0]), Tk, Tm, ovs); { V Th, Ti, Tn, To; Th = VFNMS(LDK(KP500000000), Tg, Td); Ti = VBYI(VMUL(LDK(KP866025403), VSUB(Tf, Te))); Tn = VSUB(Th, Ti); STM2(&(xo[4]), Tn, ovs, &(xo[0])); STN2(&(xo[4]), Tn, Tj, ovs); To = VADD(Th, Ti); STM2(&(xo[8]), To, ovs, &(xo[0])); STN2(&(xo[8]), To, Tl, ovs); } } } } VLEAVE(); } static const kdft_desc desc = { 6, XSIMD_STRING("n2fv_6"), { 16, 2, 2, 0 }, &GENUS, 0, 2, 0, 0 }; void XSIMD(codelet_n2fv_6) (planner *p) { X(kdft_register) (p, n2fv_6, &desc); } #endif