/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Tue Sep 14 10:45:15 EDT 2021 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 10 -name n2bv_10 -with-ostride 2 -include dft/simd/n2b.h -store-multiple 2 */ /* * This function contains 42 FP additions, 22 FP multiplications, * (or, 24 additions, 4 multiplications, 18 fused multiply/add), * 36 stack variables, 4 constants, and 25 memory accesses */ #include "dft/simd/n2b.h" static void n2bv_10(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { DVK(KP559016994, +0.559016994374947424102293417182819058860154590); DVK(KP250000000, +0.250000000000000000000000000000000000000000000); DVK(KP618033988, +0.618033988749894848204586834365638117720309180); DVK(KP951056516, +0.951056516295153572116439333379382143405698634); { INT i; const R *xi; R *xo; xi = ii; xo = io; for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(20, is), MAKE_VOLATILE_STRIDE(20, os)) { V T3, Tr, Tm, Tn, TD, TC, Tu, Tx, Ty, Ta, Th, Ti, T1, T2; T1 = LD(&(xi[0]), ivs, &(xi[0])); T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); T3 = VSUB(T1, T2); Tr = VADD(T1, T2); { V T6, Ts, Tg, Tw, T9, Tt, Td, Tv; { V T4, T5, Te, Tf; T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); T5 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); T6 = VSUB(T4, T5); Ts = VADD(T4, T5); Te = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); Tg = VSUB(Te, Tf); Tw = VADD(Te, Tf); } { V T7, T8, Tb, Tc; T7 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); T8 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); T9 = VSUB(T7, T8); Tt = VADD(T7, T8); Tb = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); Tc = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); Td = VSUB(Tb, Tc); Tv = VADD(Tb, Tc); } Tm = VSUB(T6, T9); Tn = VSUB(Td, Tg); TD = VSUB(Ts, Tt); TC = VSUB(Tv, Tw); Tu = VADD(Ts, Tt); Tx = VADD(Tv, Tw); Ty = VADD(Tu, Tx); Ta = VADD(T6, T9); Th = VADD(Td, Tg); Ti = VADD(Ta, Th); } { V TH, TI, TK, TL, TM; TH = VADD(T3, Ti); STM2(&(xo[10]), TH, ovs, &(xo[2])); TI = VADD(Tr, Ty); STM2(&(xo[0]), TI, ovs, &(xo[0])); { V To, Tq, Tl, Tp, Tj, Tk, TJ; To = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tn, Tm)); Tq = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tm, Tn)); Tj = VFNMS(LDK(KP250000000), Ti, T3); Tk = VSUB(Ta, Th); Tl = VFMA(LDK(KP559016994), Tk, Tj); Tp = VFNMS(LDK(KP559016994), Tk, Tj); TJ = VFMAI(To, Tl); STM2(&(xo[2]), TJ, ovs, &(xo[2])); STN2(&(xo[0]), TI, TJ, ovs); TK = VFNMSI(Tq, Tp); STM2(&(xo[14]), TK, ovs, &(xo[2])); TL = VFNMSI(To, Tl); STM2(&(xo[18]), TL, ovs, &(xo[2])); TM = VFMAI(Tq, Tp); STM2(&(xo[6]), TM, ovs, &(xo[2])); } { V TE, TG, TB, TF, Tz, TA; TE = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TD, TC)); TG = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TC, TD)); Tz = VFNMS(LDK(KP250000000), Ty, Tr); TA = VSUB(Tu, Tx); TB = VFNMS(LDK(KP559016994), TA, Tz); TF = VFMA(LDK(KP559016994), TA, Tz); { V TN, TO, TP, TQ; TN = VFNMSI(TE, TB); STM2(&(xo[4]), TN, ovs, &(xo[0])); STN2(&(xo[4]), TN, TM, ovs); TO = VFMAI(TG, TF); STM2(&(xo[12]), TO, ovs, &(xo[0])); STN2(&(xo[12]), TO, TK, ovs); TP = VFMAI(TE, TB); STM2(&(xo[16]), TP, ovs, &(xo[0])); STN2(&(xo[16]), TP, TL, ovs); TQ = VFNMSI(TG, TF); STM2(&(xo[8]), TQ, ovs, &(xo[0])); STN2(&(xo[8]), TQ, TH, ovs); } } } } } VLEAVE(); } static const kdft_desc desc = { 10, XSIMD_STRING("n2bv_10"), { 24, 4, 18, 0 }, &GENUS, 0, 2, 0, 0 }; void XSIMD(codelet_n2bv_10) (planner *p) { X(kdft_register) (p, n2bv_10, &desc); } #else /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 10 -name n2bv_10 -with-ostride 2 -include dft/simd/n2b.h -store-multiple 2 */ /* * This function contains 42 FP additions, 12 FP multiplications, * (or, 36 additions, 6 multiplications, 6 fused multiply/add), * 36 stack variables, 4 constants, and 25 memory accesses */ #include "dft/simd/n2b.h" static void n2bv_10(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { DVK(KP250000000, +0.250000000000000000000000000000000000000000000); DVK(KP559016994, +0.559016994374947424102293417182819058860154590); DVK(KP587785252, +0.587785252292473129168705954639072768597652438); DVK(KP951056516, +0.951056516295153572116439333379382143405698634); { INT i; const R *xi; R *xo; xi = ii; xo = io; for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(20, is), MAKE_VOLATILE_STRIDE(20, os)) { V Tl, Ty, T7, Te, Tw, Tt, Tz, TA, TB, Tg, Th, Tm, Tj, Tk; Tj = LD(&(xi[0]), ivs, &(xi[0])); Tk = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); Tl = VSUB(Tj, Tk); Ty = VADD(Tj, Tk); { V T3, Tr, Td, Tv, T6, Ts, Ta, Tu; { V T1, T2, Tb, Tc; T1 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); T2 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); T3 = VSUB(T1, T2); Tr = VADD(T1, T2); Tb = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); Tc = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); Td = VSUB(Tb, Tc); Tv = VADD(Tb, Tc); } { V T4, T5, T8, T9; T4 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); T5 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); T6 = VSUB(T4, T5); Ts = VADD(T4, T5); T8 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); T9 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); Ta = VSUB(T8, T9); Tu = VADD(T8, T9); } T7 = VSUB(T3, T6); Te = VSUB(Ta, Td); Tw = VSUB(Tu, Tv); Tt = VSUB(Tr, Ts); Tz = VADD(Tr, Ts); TA = VADD(Tu, Tv); TB = VADD(Tz, TA); Tg = VADD(T3, T6); Th = VADD(Ta, Td); Tm = VADD(Tg, Th); } { V TH, TI, TK, TL, TM; TH = VADD(Tl, Tm); STM2(&(xo[10]), TH, ovs, &(xo[2])); TI = VADD(Ty, TB); STM2(&(xo[0]), TI, ovs, &(xo[0])); { V Tf, Tq, To, Tp, Ti, Tn, TJ; Tf = VBYI(VFMA(LDK(KP951056516), T7, VMUL(LDK(KP587785252), Te))); Tq = VBYI(VFNMS(LDK(KP951056516), Te, VMUL(LDK(KP587785252), T7))); Ti = VMUL(LDK(KP559016994), VSUB(Tg, Th)); Tn = VFNMS(LDK(KP250000000), Tm, Tl); To = VADD(Ti, Tn); Tp = VSUB(Tn, Ti); TJ = VADD(Tf, To); STM2(&(xo[2]), TJ, ovs, &(xo[2])); STN2(&(xo[0]), TI, TJ, ovs); TK = VADD(Tq, Tp); STM2(&(xo[14]), TK, ovs, &(xo[2])); TL = VSUB(To, Tf); STM2(&(xo[18]), TL, ovs, &(xo[2])); TM = VSUB(Tp, Tq); STM2(&(xo[6]), TM, ovs, &(xo[2])); } { V Tx, TG, TE, TF, TC, TD; Tx = VBYI(VFNMS(LDK(KP951056516), Tw, VMUL(LDK(KP587785252), Tt))); TG = VBYI(VFMA(LDK(KP951056516), Tt, VMUL(LDK(KP587785252), Tw))); TC = VFNMS(LDK(KP250000000), TB, Ty); TD = VMUL(LDK(KP559016994), VSUB(Tz, TA)); TE = VSUB(TC, TD); TF = VADD(TD, TC); { V TN, TO, TP, TQ; TN = VADD(Tx, TE); STM2(&(xo[4]), TN, ovs, &(xo[0])); STN2(&(xo[4]), TN, TM, ovs); TO = VADD(TG, TF); STM2(&(xo[12]), TO, ovs, &(xo[0])); STN2(&(xo[12]), TO, TK, ovs); TP = VSUB(TE, Tx); STM2(&(xo[16]), TP, ovs, &(xo[0])); STN2(&(xo[16]), TP, TL, ovs); TQ = VSUB(TF, TG); STM2(&(xo[8]), TQ, ovs, &(xo[0])); STN2(&(xo[8]), TQ, TH, ovs); } } } } } VLEAVE(); } static const kdft_desc desc = { 10, XSIMD_STRING("n2bv_10"), { 36, 6, 6, 0 }, &GENUS, 0, 2, 0, 0 }; void XSIMD(codelet_n2bv_10) (planner *p) { X(kdft_register) (p, n2bv_10, &desc); } #endif