/** * Furnace Tracker - multi-system chiptune tracker * Copyright (C) 2021-2022 tildearrow and contributors * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "ym2610.h" #include "../engine.h" #include #include #include "ym2610shared.h" #include "fmshared_OPN.h" static unsigned char konOffs[4]={ 1, 2, 5, 6 }; #define CHIP_DIVIDER 32 const char* regCheatSheetYM2610[]={ // SSG "SSG_FreqL_A", "000", "SSG_FreqH_A", "001", "SSG_FreqL_B", "002", "SSG_FreqH_B", "003", "SSG_FreqL_C", "004", "SSG_FreqH_C", "005", "SSG_FreqNoise", "006", "SSG_Enable", "007", "SSG_Volume_A", "008", "SSG_Volume_B", "009", "SSG_Volume_C", "00A", "SSG_FreqL_Env", "00B", "SSG_FreqH_Env", "00C", "SSG_Control_Env", "00D", // ADPCM-B "ADPCMB_Control", "010", "ADPCMB_L_R", "011", "ADPCMB_StartL", "012", "ADPCMB_StartH", "013", "ADPCMB_EndL", "014", "ADPCMB_EndH", "015", "ADPCMB_FreqL", "019", "ADPCMB_FreqH", "01A", "ADPCMB_Volume", "01B", "ADPCM_Flag", "01C", // FM (Common) "FM_Test", "021", "FM_LFOFreq", "022", "ClockA1", "024", "ClockA2", "025", "ClockB", "026", "FM_Control", "027", "FM_NoteCtl", "028", // FM (Channel 1-2) "FM1_Op1_DT_MULT", "031", "FM2_Op1_DT_MULT", "032", "FM1_Op2_DT_MULT", "035", "FM2_Op2_DT_MULT", "036", "FM1_Op3_DT_MULT", "039", "FM2_Op3_DT_MULT", "03A", "FM1_Op4_DT_MULT", "03D", "FM2_Op4_DT_MULT", "03E", "FM1_Op1_TL", "041", "FM2_Op1_TL", "042", "FM1_Op2_TL", "045", "FM2_Op2_TL", "046", "FM1_Op3_TL", "049", "FM2_Op3_TL", "04A", "FM1_Op4_TL", "04D", "FM2_Op4_TL", "04E", "FM1_Op1_KS_AR", "051", "FM2_Op1_KS_AR", "052", "FM1_Op2_KS_AR", "055", "FM2_Op2_KS_AR", "056", "FM1_Op3_KS_AR", "059", "FM2_Op3_KS_AR", "05A", "FM1_Op4_KS_AR", "05D", "FM2_Op4_KS_AR", "05E", "FM1_Op1_AM_DR", "061", "FM2_Op1_AM_DR", "062", "FM1_Op2_AM_DR", "065", "FM2_Op2_AM_DR", "066", "FM1_Op3_AM_DR", "069", "FM2_Op3_AM_DR", "06A", "FM1_Op4_AM_DR", "06D", "FM2_Op4_AM_DR", "06E", "FM1_Op1_SR", "071", "FM2_Op1_SR", "072", "FM1_Op2_SR", "075", "FM2_Op2_SR", "076", "FM1_Op3_SR", "079", "FM2_Op3_SR", "07A", "FM1_Op4_SR", "07D", "FM2_Op4_SR", "07E", "FM1_Op1_SL_RR", "081", "FM2_Op1_SL_RR", "082", "FM1_Op2_SL_RR", "085", "FM2_Op2_SL_RR", "086", "FM1_Op3_SL_RR", "089", "FM2_Op3_SL_RR", "08A", "FM1_Op4_SL_RR", "08D", "FM2_Op4_SL_RR", "08E", "FM1_Op1_SSG_EG", "091", "FM2_Op1_SSG_EG", "092", "FM1_Op2_SSG_EG", "095", "FM2_Op2_SSG_EG", "096", "FM1_Op3_SSG_EG", "099", "FM2_Op3_SSG_EG", "09A", "FM1_Op4_SSG_EG", "09D", "FM2_Op4_SSG_EG", "09E", "FM1_FNum1", "0A1", "FM2_(Op1)FNum1", "0A2", "FM1_FNum2", "0A5", "FM2_(Op1)FNum2", "0A6", "FM2_Op2_FNum1", "0A8", "FM2_Op3_FNum1", "0A9", "FM2_Op4_FNum1", "0AA", "FM2_Op2_FNum2", "0AC", "FM2_Op3_FNum2", "0AD", "FM2_Op4_FNum2", "0AE", "FM1_FB_ALG", "0B1", "FM2_FB_ALG", "0B2", "FM1_Pan_LFO", "0B5", "FM2_Pan_LFO", "0B6", // ADPCM-A "ADPCMA_Control", "100", "ADPCMA_MVol", "101", "ADPCMA_Test", "102", "ADPCMA_Ch1_Vol", "108", "ADPCMA_Ch2_Vol", "109", "ADPCMA_Ch3_Vol", "10A", "ADPCMA_Ch4_Vol", "10B", "ADPCMA_Ch5_Vol", "10C", "ADPCMA_Ch6_Vol", "10D", "ADPCMA_Ch1_StL", "110", "ADPCMA_Ch2_StL", "111", "ADPCMA_Ch3_StL", "112", "ADPCMA_Ch4_StL", "113", "ADPCMA_Ch5_StL", "114", "ADPCMA_Ch6_StL", "115", "ADPCMA_Ch1_StH", "118", "ADPCMA_Ch2_StH", "119", "ADPCMA_Ch3_StH", "11A", "ADPCMA_Ch4_StH", "11B", "ADPCMA_Ch5_StH", "11C", "ADPCMA_Ch6_StH", "11D", "ADPCMA_Ch1_EdL", "120", "ADPCMA_Ch2_EdL", "121", "ADPCMA_Ch3_EdL", "122", "ADPCMA_Ch4_EdL", "123", "ADPCMA_Ch5_EdL", "124", "ADPCMA_Ch6_EdL", "125", "ADPCMA_Ch1_EdH", "128", "ADPCMA_Ch2_EdH", "129", "ADPCMA_Ch3_EdH", "12A", "ADPCMA_Ch4_EdH", "12B", "ADPCMA_Ch5_EdH", "12C", "ADPCMA_Ch6_EdH", "12D", // FM (Channel 3-4) "FM3_Op1_DT_MULT", "131", "FM4_Op1_DT_MULT", "132", "FM3_Op2_DT_MULT", "135", "FM4_Op2_DT_MULT", "136", "FM3_Op3_DT_MULT", "139", "FM4_Op3_DT_MULT", "13A", "FM3_Op4_DT_MULT", "13D", "FM4_Op4_DT_MULT", "13E", "FM3_Op1_TL", "141", "FM4_Op1_TL", "142", "FM3_Op2_TL", "145", "FM4_Op2_TL", "146", "FM3_Op3_TL", "149", "FM4_Op3_TL", "14A", "FM3_Op4_TL", "14D", "FM4_Op4_TL", "14E", "FM3_Op1_KS_AR", "151", "FM4_Op1_KS_AR", "152", "FM3_Op2_KS_AR", "155", "FM4_Op2_KS_AR", "156", "FM3_Op3_KS_AR", "159", "FM4_Op3_KS_AR", "15A", "FM3_Op4_KS_AR", "15D", "FM4_Op4_KS_AR", "15E", "FM3_Op1_AM_DR", "161", "FM4_Op1_AM_DR", "162", "FM3_Op2_AM_DR", "165", "FM4_Op2_AM_DR", "166", "FM3_Op3_AM_DR", "169", "FM4_Op3_AM_DR", "16A", "FM3_Op4_AM_DR", "16D", "FM4_Op4_AM_DR", "16E", "FM3_Op1_SR", "171", "FM4_Op1_SR", "172", "FM3_Op2_SR", "175", "FM4_Op2_SR", "176", "FM3_Op3_SR", "179", "FM4_Op3_SR", "17A", "FM3_Op4_SR", "17D", "FM4_Op4_SR", "17E", "FM3_Op1_SL_RR", "181", "FM4_Op1_SL_RR", "182", "FM3_Op2_SL_RR", "185", "FM4_Op2_SL_RR", "186", "FM3_Op3_SL_RR", "189", "FM4_Op3_SL_RR", "18A", "FM3_Op4_SL_RR", "18D", "FM4_Op4_SL_RR", "18E", "FM3_Op1_SSG_EG", "191", "FM4_Op1_SSG_EG", "192", "FM3_Op2_SSG_EG", "195", "FM4_Op2_SSG_EG", "196", "FM3_Op3_SSG_EG", "199", "FM4_Op3_SSG_EG", "19A", "FM3_Op4_SSG_EG", "19D", "FM4_Op4_SSG_EG", "19E", "FM3_FNum1", "1A1", "FM4_FNum1", "1A2", "FM3_FNum2", "1A5", "FM4_FNum2", "1A6", "FM3_FB_ALG", "1B1", "FM4_FB_ALG", "1B2", "FM3_Pan_LFO", "1B5", "FM4_Pan_LFO", "1B6", NULL }; const char** DivPlatformYM2610::getRegisterSheet() { return regCheatSheetYM2610; } const char* DivPlatformYM2610::getEffectName(unsigned char effect) { switch (effect) { case 0x10: return "10xy: Setup LFO (x: enable; y: speed)"; break; case 0x11: return "11xx: Set feedback (0 to 7)"; break; case 0x12: return "12xx: Set level of operator 1 (0 highest, 7F lowest)"; break; case 0x13: return "13xx: Set level of operator 2 (0 highest, 7F lowest)"; break; case 0x14: return "14xx: Set level of operator 3 (0 highest, 7F lowest)"; break; case 0x15: return "15xx: Set level of operator 4 (0 highest, 7F lowest)"; break; case 0x16: return "16xy: Set operator multiplier (x: operator from 1 to 4; y: multiplier)"; break; case 0x18: return "18xx: Toggle extended channel 3 mode"; break; case 0x19: return "19xx: Set attack of all operators (0 to 1F)"; break; case 0x1a: return "1Axx: Set attack of operator 1 (0 to 1F)"; break; case 0x1b: return "1Bxx: Set attack of operator 2 (0 to 1F)"; break; case 0x1c: return "1Cxx: Set attack of operator 3 (0 to 1F)"; break; case 0x1d: return "1Dxx: Set attack of operator 4 (0 to 1F)"; break; case 0x20: return "20xx: Set SSG channel mode (bit 0: square; bit 1: noise; bit 2: envelope)"; break; case 0x21: return "21xx: Set SSG noise frequency (0 to 1F)"; break; case 0x22: return "22xy: Set SSG envelope mode (x: shape, y: enable for this channel)"; break; case 0x23: return "23xx: Set SSG envelope period low byte"; break; case 0x24: return "24xx: Set SSG envelope period high byte"; break; case 0x25: return "25xx: SSG envelope slide up"; break; case 0x26: return "26xx: SSG envelope slide down"; break; case 0x29: return "29xy: Set SSG auto-envelope (x: numerator; y: denominator)"; break; case 0x30: return "30xx: Toggle hard envelope reset on new notes"; break; } return NULL; } double DivPlatformYM2610::NOTE_OPNB(int ch, int note) { if (ch>6) { // ADPCM return NOTE_ADPCMB(note); } else if (ch>3) { // PSG return NOTE_PERIODIC(note); } // FM return NOTE_FREQUENCY(note); } double DivPlatformYM2610::NOTE_ADPCMB(int note) { if (chan[13].sample>=0 && chan[13].samplesong.sampleLen) { double off=(double)(parent->getSample(chan[13].sample)->centerRate)/8363.0; return off*parent->calcBaseFreq((double)chipClock/144,65535,note,false); } return 0; } void DivPlatformYM2610::acquire(short* bufL, short* bufR, size_t start, size_t len) { static int os[2]; for (size_t h=start; hwrite(0x0+((w.addr>>8)<<1),w.addr); fm->write(0x1+((w.addr>>8)<<1),w.val); regPool[w.addr&0x1ff]=w.val; writes.pop(); delay=4; } } fm->generate(&fmout); os[0]=fmout.data[0]+(fmout.data[2]>>1); if (os[0]<-32768) os[0]=-32768; if (os[0]>32767) os[0]=32767; os[1]=fmout.data[1]+(fmout.data[2]>>1); if (os[1]<-32768) os[1]=-32768; if (os[1]>32767) os[1]=32767; bufL[h]=os[0]; bufR[h]=os[1]; } } void DivPlatformYM2610::tick() { // PSG ay->tick(); ay->flushWrites(); for (DivRegWrite& i: ay->getRegisterWrites()) { immWrite(i.addr&15,i.val); } ay->getRegisterWrites().clear(); // FM for (int i=0; i<4; i++) { if (i==1 && extMode) continue; chan[i].std.next(); if (chan[i].std.vol.had) { chan[i].outVol=(chan[i].vol*MIN(127,chan[i].std.vol.val))/127; for (int j=0; j<4; j++) { unsigned short baseAddr=chanOffs[i]|opOffs[j]; DivInstrumentFM::Operator& op=chan[i].state.op[j]; if (isOutput[chan[i].state.alg][j]) { rWrite(baseAddr+ADDR_TL,127-(((127-op.tl)*(chan[i].outVol&0x7f))/127)); } else { rWrite(baseAddr+ADDR_TL,op.tl); } } } if (chan[i].std.arp.had) { if (!chan[i].inPorta) { if (chan[i].std.arp.mode) { chan[i].baseFreq=NOTE_FREQUENCY(chan[i].std.arp.val); } else { chan[i].baseFreq=NOTE_FREQUENCY(chan[i].note+(signed char)chan[i].std.arp.val); } } chan[i].freqChanged=true; } else { if (chan[i].std.arp.mode && chan[i].std.arp.finished) { chan[i].baseFreq=NOTE_FREQUENCY(chan[i].note); chan[i].freqChanged=true; } } if (chan[i].std.phaseReset.had) { if (chan[i].std.phaseReset.val==1) { chan[i].keyOn=true; } } if (chan[i].std.alg.had) { chan[i].state.alg=chan[i].std.alg.val; rWrite(chanOffs[i]+ADDR_FB_ALG,(chan[i].state.alg&7)|(chan[i].state.fb<<3)); if (!parent->song.algMacroBehavior) for (int j=0; j<4; j++) { unsigned short baseAddr=chanOffs[i]|opOffs[j]; DivInstrumentFM::Operator& op=chan[i].state.op[j]; if (isMuted[i]) { rWrite(baseAddr+ADDR_TL,127); } else { if (isOutput[chan[i].state.alg][j]) { rWrite(baseAddr+ADDR_TL,127-(((127-op.tl)*(chan[i].outVol&0x7f))/127)); } else { rWrite(baseAddr+ADDR_TL,op.tl); } } } } if (chan[i].std.fb.had) { chan[i].state.fb=chan[i].std.fb.val; rWrite(chanOffs[i]+ADDR_FB_ALG,(chan[i].state.alg&7)|(chan[i].state.fb<<3)); } if (chan[i].std.fms.had) { chan[i].state.fms=chan[i].std.fms.val; rWrite(chanOffs[i]+ADDR_LRAF,(isMuted[i]?0:(chan[i].pan<<6))|(chan[i].state.fms&7)|((chan[i].state.ams&3)<<4)); } if (chan[i].std.ams.had) { chan[i].state.ams=chan[i].std.ams.val; rWrite(chanOffs[i]+ADDR_LRAF,(isMuted[i]?0:(chan[i].pan<<6))|(chan[i].state.fms&7)|((chan[i].state.ams&3)<<4)); } for (int j=0; j<4; j++) { unsigned short baseAddr=chanOffs[i]|opOffs[j]; DivInstrumentFM::Operator& op=chan[i].state.op[j]; DivMacroInt::IntOp& m=chan[i].std.op[j]; if (m.am.had) { op.am=m.am.val; rWrite(baseAddr+ADDR_AM_DR,(op.dr&31)|(op.am<<7)); } if (m.ar.had) { op.ar=m.ar.val; rWrite(baseAddr+ADDR_RS_AR,(op.ar&31)|(op.rs<<6)); } if (m.dr.had) { op.dr=m.dr.val; rWrite(baseAddr+ADDR_AM_DR,(op.dr&31)|(op.am<<7)); } if (m.mult.had) { op.mult=m.mult.val; rWrite(baseAddr+ADDR_MULT_DT,(op.mult&15)|(dtTable[op.dt&7]<<4)); } if (m.rr.had) { op.rr=m.rr.val; rWrite(baseAddr+ADDR_SL_RR,(op.rr&15)|(op.sl<<4)); } if (m.sl.had) { op.sl=m.sl.val; rWrite(baseAddr+ADDR_SL_RR,(op.rr&15)|(op.sl<<4)); } if (m.tl.had) { op.tl=127-m.tl.val; if (isOutput[chan[i].state.alg][j]) { rWrite(baseAddr+ADDR_TL,127-(((127-op.tl)*(chan[i].outVol&0x7f))/127)); } else { rWrite(baseAddr+ADDR_TL,op.tl); } } if (m.rs.had) { op.rs=m.rs.val; rWrite(baseAddr+ADDR_RS_AR,(op.ar&31)|(op.rs<<6)); } if (m.dt.had) { op.dt=m.dt.val; rWrite(baseAddr+ADDR_MULT_DT,(op.mult&15)|(dtTable[op.dt&7]<<4)); } if (m.d2r.had) { op.d2r=m.d2r.val; rWrite(baseAddr+ADDR_DT2_D2R,op.d2r&31); } if (m.ssg.had) { op.ssgEnv=m.ssg.val; rWrite(baseAddr+ADDR_SSG,op.ssgEnv&15); } } if (chan[i].keyOn || chan[i].keyOff) { if (chan[i].hardReset && chan[i].keyOn) { for (int j=0; j<4; j++) { unsigned short baseAddr=chanOffs[i]|opOffs[j]; immWrite(baseAddr+ADDR_SL_RR,0x0f); immWrite(baseAddr+ADDR_TL,0x7f); oldWrites[baseAddr+ADDR_SL_RR]=-1; oldWrites[baseAddr+ADDR_TL]=-1; //rWrite(baseAddr+ADDR_SL_RR,(op.rr&15)|(op.sl<<4)); } } immWrite(0x28,0x00|konOffs[i]); if (chan[i].hardReset && chan[i].keyOn) { for (int j=0; j<4; j++) { unsigned short baseAddr=chanOffs[i]|opOffs[j]; for (int k=0; k<100; k++) { immWrite(baseAddr+ADDR_SL_RR,0x0f); } } } chan[i].keyOff=false; } } // ADPCM-B if (chan[13].furnacePCM) { chan[13].std.next(); if (chan[13].std.vol.had) { chan[13].outVol=(chan[13].vol*MIN(64,chan[13].std.vol.val))/64; immWrite(0x1b,chan[13].outVol); } if (chan[13].std.arp.had) { if (!chan[13].inPorta) { if (chan[13].std.arp.mode) { chan[13].baseFreq=NOTE_ADPCMB(chan[13].std.arp.val); } else { chan[13].baseFreq=NOTE_ADPCMB(chan[13].note+(signed char)chan[13].std.arp.val); } } chan[13].freqChanged=true; } else { if (chan[13].std.arp.mode && chan[13].std.arp.finished) { chan[13].baseFreq=NOTE_ADPCMB(chan[13].note); chan[13].freqChanged=true; } } } if (chan[13].freqChanged) { chan[13].freq=parent->calcFreq(chan[13].baseFreq,chan[13].pitch,false,4); immWrite(0x19,chan[13].freq&0xff); immWrite(0x1a,(chan[13].freq>>8)&0xff); chan[13].freqChanged=false; } for (int i=16; i<512; i++) { if (pendingWrites[i]!=oldWrites[i]) { immWrite(i,pendingWrites[i]&0xff); oldWrites[i]=pendingWrites[i]; } } for (int i=0; i<4; i++) { if (i==1 && extMode) continue; if (chan[i].freqChanged) { chan[i].freq=parent->calcFreq(chan[i].baseFreq,chan[i].pitch,false,octave(chan[i].baseFreq)); if (chan[i].freq>262143) chan[i].freq=262143; int freqt=toFreq(chan[i].freq)+chan[i].std.pitch.val; immWrite(chanOffs[i]+ADDR_FREQH,freqt>>8); immWrite(chanOffs[i]+ADDR_FREQ,freqt&0xff); chan[i].freqChanged=false; } if (chan[i].keyOn) { immWrite(0x28,0xf0|konOffs[i]); chan[i].keyOn=false; } } } int DivPlatformYM2610::octave(int freq) { if (freq>=622.0f*128) { return 128; } else if (freq>=622.0f*64) { return 64; } else if (freq>=622.0f*32) { return 32; } else if (freq>=622.0f*16) { return 16; } else if (freq>=622.0f*8) { return 8; } else if (freq>=622.0f*4) { return 4; } else if (freq>=622.0f*2) { return 2; } else { return 1; } return 1; } int DivPlatformYM2610::toFreq(int freq) { if (freq>=622.0f*128) { return 0x3800|((freq>>7)&0x7ff); } else if (freq>=622.0f*64) { return 0x3000|((freq>>6)&0x7ff); } else if (freq>=622.0f*32) { return 0x2800|((freq>>5)&0x7ff); } else if (freq>=622.0f*16) { return 0x2000|((freq>>4)&0x7ff); } else if (freq>=622.0f*8) { return 0x1800|((freq>>3)&0x7ff); } else if (freq>=622.0f*4) { return 0x1000|((freq>>2)&0x7ff); } else if (freq>=622.0f*2) { return 0x800|((freq>>1)&0x7ff); } else { return freq&0x7ff; } } int DivPlatformYM2610::dispatch(DivCommand c) { if (c.chan>3 && c.chan<7) { c.chan-=4; return ay->dispatch(c); } switch (c.cmd) { case DIV_CMD_NOTE_ON: { if (c.chan>12) { // ADPCM-B DivInstrument* ins=parent->getIns(chan[c.chan].ins); if (ins->type==DIV_INS_AMIGA) { chan[c.chan].furnacePCM=true; } else { chan[c.chan].furnacePCM=false; } if (skipRegisterWrites) break; if (chan[c.chan].furnacePCM) { chan[c.chan].std.init(ins); if (!chan[c.chan].std.vol.will) { chan[c.chan].outVol=chan[c.chan].vol; immWrite(0x1b,chan[c.chan].outVol); } chan[c.chan].sample=ins->amiga.initSample; if (chan[c.chan].sample>=0 && chan[c.chan].samplesong.sampleLen) { DivSample* s=parent->getSample(chan[c.chan].sample); immWrite(0x12,(s->offB>>8)&0xff); immWrite(0x13,s->offB>>16); int end=s->offB+s->lengthB-1; immWrite(0x14,(end>>8)&0xff); immWrite(0x15,end>>16); immWrite(0x11,isMuted[c.chan]?0:(chan[c.chan].pan<<6)); immWrite(0x10,(s->loopStart>=0)?0x90:0x80); // start/repeat if (c.value!=DIV_NOTE_NULL) { chan[c.chan].note=c.value; chan[c.chan].baseFreq=NOTE_ADPCMB(chan[c.chan].note); chan[c.chan].freqChanged=true; } chan[c.chan].active=true; chan[c.chan].keyOn=true; } else { immWrite(0x10,0x01); // reset immWrite(0x12,0); immWrite(0x13,0); immWrite(0x14,0); immWrite(0x15,0); break; } } else { chan[c.chan].sample=-1; chan[c.chan].std.init(NULL); chan[c.chan].outVol=chan[c.chan].vol; if ((12*sampleBank+c.value%12)>=parent->song.sampleLen) { immWrite(0x10,0x01); // reset immWrite(0x12,0); immWrite(0x13,0); immWrite(0x14,0); immWrite(0x15,0); break; } DivSample* s=parent->getSample(12*sampleBank+c.value%12); immWrite(0x12,(s->offB>>8)&0xff); immWrite(0x13,s->offB>>16); int end=s->offB+s->lengthB-1; immWrite(0x14,(end>>8)&0xff); immWrite(0x15,end>>16); immWrite(0x11,isMuted[c.chan]?0:(chan[c.chan].pan<<6)); immWrite(0x10,(s->loopStart>=0)?0x90:0x80); // start/repeat chan[c.chan].baseFreq=(((unsigned int)s->rate)<<16)/(chipClock/144); chan[c.chan].freqChanged=true; } break; } if (c.chan>6) { // ADPCM-A if (skipRegisterWrites) break; if ((12*sampleBank+c.value%12)>=parent->song.sampleLen) { immWrite(0x100,0x80|(1<<(c.chan-7))); immWrite(0x110+c.chan-7,0); immWrite(0x118+c.chan-7,0); immWrite(0x120+c.chan-7,0); immWrite(0x128+c.chan-7,0); break; } DivSample* s=parent->getSample(12*sampleBank+c.value%12); immWrite(0x110+c.chan-7,(s->offA>>8)&0xff); immWrite(0x118+c.chan-7,s->offA>>16); int end=s->offA+s->lengthA-1; immWrite(0x120+c.chan-7,(end>>8)&0xff); immWrite(0x128+c.chan-7,end>>16); immWrite(0x108+(c.chan-7),isMuted[c.chan]?0:((chan[c.chan].pan<<6)|chan[c.chan].vol)); immWrite(0x100,0x00|(1<<(c.chan-7))); break; } DivInstrument* ins=parent->getIns(chan[c.chan].ins); chan[c.chan].std.init(ins); if (c.chan<4) { if (!chan[c.chan].std.vol.will) { chan[c.chan].outVol=chan[c.chan].vol; } } if (chan[c.chan].insChanged) { chan[c.chan].state=ins->fm; } for (int i=0; i<4; i++) { unsigned short baseAddr=chanOffs[c.chan]|opOffs[i]; DivInstrumentFM::Operator& op=chan[c.chan].state.op[i]; if (isOutput[chan[c.chan].state.alg][i]) { if (!chan[c.chan].active || chan[c.chan].insChanged) { rWrite(baseAddr+ADDR_TL,127-(((127-op.tl)*(chan[c.chan].outVol&0x7f))/127)); } } else { if (chan[c.chan].insChanged) { rWrite(baseAddr+ADDR_TL,op.tl); } } if (chan[c.chan].insChanged) { rWrite(baseAddr+ADDR_MULT_DT,(op.mult&15)|(dtTable[op.dt&7]<<4)); rWrite(baseAddr+ADDR_RS_AR,(op.ar&31)|(op.rs<<6)); rWrite(baseAddr+ADDR_AM_DR,(op.dr&31)|(op.am<<7)); rWrite(baseAddr+ADDR_DT2_D2R,op.d2r&31); rWrite(baseAddr+ADDR_SL_RR,(op.rr&15)|(op.sl<<4)); rWrite(baseAddr+ADDR_SSG,op.ssgEnv&15); } } if (chan[c.chan].insChanged) { rWrite(chanOffs[c.chan]+ADDR_FB_ALG,(chan[c.chan].state.alg&7)|(chan[c.chan].state.fb<<3)); rWrite(chanOffs[c.chan]+ADDR_LRAF,(isMuted[c.chan]?0:(chan[c.chan].pan<<6))|(chan[c.chan].state.fms&7)|((chan[c.chan].state.ams&3)<<4)); } chan[c.chan].insChanged=false; if (c.value!=DIV_NOTE_NULL) { chan[c.chan].baseFreq=NOTE_FREQUENCY(c.value); chan[c.chan].portaPause=false; chan[c.chan].freqChanged=true; chan[c.chan].note=c.value; } chan[c.chan].keyOn=true; chan[c.chan].active=true; break; } case DIV_CMD_NOTE_OFF: if (c.chan>12) { immWrite(0x10,0x01); // reset break; } if (c.chan>6) { immWrite(0x100,0x80|(1<<(c.chan-7))); break; } chan[c.chan].keyOff=true; chan[c.chan].keyOn=false; chan[c.chan].active=false; chan[c.chan].std.init(NULL); break; case DIV_CMD_NOTE_OFF_ENV: if (c.chan>12) { immWrite(0x10,0x01); // reset break; } if (c.chan>6) { immWrite(0x100,0x80|(1<<(c.chan-7))); break; } chan[c.chan].keyOff=true; chan[c.chan].keyOn=false; chan[c.chan].active=false; chan[c.chan].std.release(); break; case DIV_CMD_ENV_RELEASE: chan[c.chan].std.release(); break; case DIV_CMD_VOLUME: { chan[c.chan].vol=c.value; if (!chan[c.chan].std.vol.has) { chan[c.chan].outVol=c.value; } if (c.chan>12) { // ADPCM-B immWrite(0x1b,chan[c.chan].outVol); break; } if (c.chan>6) { // ADPCM-A immWrite(0x108+(c.chan-7),isMuted[c.chan]?0:((chan[c.chan].pan<<6)|chan[c.chan].vol)); break; } for (int i=0; i<4; i++) { unsigned short baseAddr=chanOffs[c.chan]|opOffs[i]; DivInstrumentFM::Operator& op=chan[c.chan].state.op[i]; if (isOutput[chan[c.chan].state.alg][i]) { rWrite(baseAddr+ADDR_TL,127-(((127-op.tl)*(chan[c.chan].outVol&0x7f))/127)); } else { rWrite(baseAddr+ADDR_TL,op.tl); } } break; } case DIV_CMD_GET_VOLUME: { return chan[c.chan].vol; break; } case DIV_CMD_INSTRUMENT: if (chan[c.chan].ins!=c.value || c.value2==1) { chan[c.chan].insChanged=true; } chan[c.chan].ins=c.value; break; case DIV_CMD_PANNING: { if (c.value==0) { chan[c.chan].pan=3; } else { chan[c.chan].pan=((c.value&15)>0)|(((c.value>>4)>0)<<1); } if (c.chan>12) { immWrite(0x11,isMuted[c.chan]?0:(chan[c.chan].pan<<6)); break; } if (c.chan>6) { immWrite(0x108+(c.chan-7),isMuted[c.chan]?0:((chan[c.chan].pan<<6)|chan[c.chan].vol)); break; } rWrite(chanOffs[c.chan]+ADDR_LRAF,(isMuted[c.chan]?0:(chan[c.chan].pan<<6))|(chan[c.chan].state.fms&7)|((chan[c.chan].state.ams&3)<<4)); break; } case DIV_CMD_PITCH: { chan[c.chan].pitch=c.value; chan[c.chan].freqChanged=true; break; } case DIV_CMD_NOTE_PORTA: { if (c.chan>3) { // PSG, ADPCM-B int destFreq=NOTE_OPNB(c.chan,c.value2); bool return2=false; if (destFreq>chan[c.chan].baseFreq) { chan[c.chan].baseFreq+=c.value; if (chan[c.chan].baseFreq>=destFreq) { chan[c.chan].baseFreq=destFreq; return2=true; } } else { chan[c.chan].baseFreq-=c.value; if (chan[c.chan].baseFreq<=destFreq) { chan[c.chan].baseFreq=destFreq; return2=true; } } chan[c.chan].freqChanged=true; if (return2) { chan[c.chan].inPorta=false; return 2; } break; } int destFreq=NOTE_FREQUENCY(c.value2); int newFreq; bool return2=false; if (destFreq>chan[c.chan].baseFreq) { newFreq=chan[c.chan].baseFreq+c.value*octave(chan[c.chan].baseFreq); if (newFreq>=destFreq) { newFreq=destFreq; return2=true; } } else { newFreq=chan[c.chan].baseFreq-c.value*octave(chan[c.chan].baseFreq); if (newFreq<=destFreq) { newFreq=destFreq; return2=true; } } if (!chan[c.chan].portaPause) { if (octave(chan[c.chan].baseFreq)!=octave(newFreq)) { chan[c.chan].portaPause=true; break; } } chan[c.chan].baseFreq=newFreq; chan[c.chan].portaPause=false; chan[c.chan].freqChanged=true; if (return2) return 2; break; } case DIV_CMD_SAMPLE_BANK: sampleBank=c.value; if (sampleBank>(parent->song.sample.size()/12)) { sampleBank=parent->song.sample.size()/12; } iface.sampleBank=sampleBank; break; case DIV_CMD_LEGATO: { chan[c.chan].baseFreq=NOTE_OPNB(c.chan,c.value); chan[c.chan].freqChanged=true; break; } case DIV_CMD_FM_LFO: { rWrite(0x22,(c.value&7)|((c.value>>4)<<3)); break; } case DIV_CMD_FM_FB: { if (c.chan>3) break; chan[c.chan].state.fb=c.value&7; rWrite(chanOffs[c.chan]+ADDR_FB_ALG,(chan[c.chan].state.alg&7)|(chan[c.chan].state.fb<<3)); break; } case DIV_CMD_FM_MULT: { if (c.chan>3) break; unsigned short baseAddr=chanOffs[c.chan]|opOffs[orderedOps[c.value]]; DivInstrumentFM::Operator& op=chan[c.chan].state.op[orderedOps[c.value]]; op.mult=c.value2&15; rWrite(baseAddr+ADDR_MULT_DT,(op.mult&15)|(dtTable[op.dt&7]<<4)); break; } case DIV_CMD_FM_TL: { if (c.chan>3) break; unsigned short baseAddr=chanOffs[c.chan]|opOffs[orderedOps[c.value]]; DivInstrumentFM::Operator& op=chan[c.chan].state.op[orderedOps[c.value]]; op.tl=c.value2; if (isOutput[chan[c.chan].state.alg][c.value]) { rWrite(baseAddr+ADDR_TL,127-(((127-op.tl)*(chan[c.chan].outVol&0x7f))/127)); } else { rWrite(baseAddr+ADDR_TL,op.tl); } break; } case DIV_CMD_FM_AR: { if (c.chan>3) break; if (c.value<0) { for (int i=0; i<4; i++) { DivInstrumentFM::Operator& op=chan[c.chan].state.op[i]; op.ar=c.value2&31; unsigned short baseAddr=chanOffs[c.chan]|opOffs[i]; rWrite(baseAddr+ADDR_RS_AR,(op.ar&31)|(op.rs<<6)); } } else { DivInstrumentFM::Operator& op=chan[c.chan].state.op[orderedOps[c.value]]; op.ar=c.value2&31; unsigned short baseAddr=chanOffs[c.chan]|opOffs[orderedOps[c.value]]; rWrite(baseAddr+ADDR_RS_AR,(op.ar&31)|(op.rs<<6)); } break; } case DIV_CMD_FM_HARD_RESET: chan[c.chan].hardReset=c.value; break; case DIV_ALWAYS_SET_VOLUME: return 0; break; case DIV_CMD_GET_VOLMAX: if (c.chan>12) return 255; if (c.chan>6) return 31; if (c.chan>3) return 15; return 127; break; case DIV_CMD_PRE_PORTA: if (c.chan>3) { if (chan[c.chan].active && c.value2) { if (parent->song.resetMacroOnPorta) chan[c.chan].std.init(parent->getIns(chan[c.chan].ins)); } } chan[c.chan].inPorta=c.value; break; case DIV_CMD_PRE_NOTE: break; default: //printf("WARNING: unimplemented command %d\n",c.cmd); break; } return 1; } void DivPlatformYM2610::muteChannel(int ch, bool mute) { isMuted[ch]=mute; if (ch>12) { // ADPCM-B immWrite(0x11,isMuted[ch]?0:(chan[ch].pan<<6)); } if (ch>6) { // ADPCM-A immWrite(0x108+(ch-7),isMuted[ch]?0:((chan[ch].pan<<6)|chan[ch].vol)); return; } if (ch>3) { // PSG ay->muteChannel(ch-4,mute); return; } // FM rWrite(chanOffs[ch]+ADDR_LRAF,(isMuted[ch]?0:(chan[ch].pan<<6))|(chan[ch].state.fms&7)|((chan[ch].state.ams&3)<<4)); } void DivPlatformYM2610::forceIns() { for (int i=0; i<4; i++) { for (int j=0; j<4; j++) { unsigned short baseAddr=chanOffs[i]|opOffs[j]; DivInstrumentFM::Operator& op=chan[i].state.op[j]; if (isOutput[chan[i].state.alg][j]) { rWrite(baseAddr+ADDR_TL,127-(((127-op.tl)*(chan[i].outVol&0x7f))/127)); } else { rWrite(baseAddr+ADDR_TL,op.tl); } rWrite(baseAddr+ADDR_MULT_DT,(op.mult&15)|(dtTable[op.dt&7]<<4)); rWrite(baseAddr+ADDR_RS_AR,(op.ar&31)|(op.rs<<6)); rWrite(baseAddr+ADDR_AM_DR,(op.dr&31)|(op.am<<7)); rWrite(baseAddr+ADDR_DT2_D2R,op.d2r&31); rWrite(baseAddr+ADDR_SL_RR,(op.rr&15)|(op.sl<<4)); rWrite(baseAddr+ADDR_SSG,op.ssgEnv&15); } rWrite(chanOffs[i]+ADDR_FB_ALG,(chan[i].state.alg&7)|(chan[i].state.fb<<3)); rWrite(chanOffs[i]+ADDR_LRAF,(isMuted[i]?0:(chan[i].pan<<6))|(chan[i].state.fms&7)|((chan[i].state.ams&3)<<4)); if (chan[i].active) { chan[i].keyOn=true; chan[i].freqChanged=true; } } for (int i=7; i<14; i++) { chan[i].insChanged=true; } ay->forceIns(); ay->flushWrites(); for (DivRegWrite& i: ay->getRegisterWrites()) { immWrite(i.addr&15,i.val); } ay->getRegisterWrites().clear(); } void* DivPlatformYM2610::getChanState(int ch) { return &chan[ch]; } unsigned char* DivPlatformYM2610::getRegisterPool() { return regPool; } int DivPlatformYM2610::getRegisterPoolSize() { return 512; } void DivPlatformYM2610::poke(unsigned int addr, unsigned short val) { immWrite(addr,val); } void DivPlatformYM2610::poke(std::vector& wlist) { for (DivRegWrite& i: wlist) immWrite(i.addr,i.val); } void DivPlatformYM2610::reset() { while (!writes.empty()) writes.pop(); memset(regPool,0,512); if (dumpWrites) { addWrite(0xffffffff,0); } fm->reset(); for (int i=0; i<14; i++) { chan[i]=DivPlatformYM2610::Channel(); chan[i].std.setEngine(parent); } for (int i=0; i<4; i++) { chan[i].vol=0x7f; chan[i].outVol=0x7f; } for (int i=4; i<7; i++) { chan[i].vol=0x0f; } for (int i=7; i<13; i++) { chan[i].vol=0x1f; } chan[13].vol=0xff; for (int i=0; i<512; i++) { oldWrites[i]=-1; pendingWrites[i]=-1; } lastBusy=60; sampleBank=0; delay=0; extMode=false; // LFO immWrite(0x22,0x08); // PCM volume immWrite(0x101,0x3f); // A immWrite(0x1b,0xff); // B ay->reset(); ay->getRegisterWrites().clear(); ay->flushWrites(); } bool DivPlatformYM2610::isStereo() { return true; } bool DivPlatformYM2610::keyOffAffectsArp(int ch) { return (ch>3); } void DivPlatformYM2610::notifyInsChange(int ins) { for (int i=0; i<14; i++) { if (chan[i].ins==ins) { chan[i].insChanged=true; } } ay->notifyInsChange(ins); } void DivPlatformYM2610::notifyInsDeletion(void* ins) { ay->notifyInsDeletion(ins); } void DivPlatformYM2610::setSkipRegisterWrites(bool value) { DivDispatch::setSkipRegisterWrites(value); ay->setSkipRegisterWrites(value); } int DivPlatformYM2610::init(DivEngine* p, int channels, int sugRate, unsigned int flags) { parent=p; dumpWrites=false; skipRegisterWrites=false; for (int i=0; i<14; i++) { isMuted[i]=false; } chipClock=8000000; rate=chipClock/16; iface.parent=parent; iface.sampleBank=0; fm=new ymfm::ym2610(iface); // YM2149, 2MHz ay=new DivPlatformAY8910; ay->init(p,3,sugRate,35); ay->toggleRegisterDump(true); reset(); return 14; } void DivPlatformYM2610::quit() { ay->quit(); delete ay; delete fm; } DivPlatformYM2610::~DivPlatformYM2610() { }