/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* Plans for handling vector transform loops. These are *just* the loops, and rely on child plans for the actual RDFTs. They form a wrapper around solvers that don't have apply functions for non-null vectors. vrank-geq1 plans also recursively handle the case of multi-dimensional vectors, obviating the need for most solvers to deal with this. We can also play games here, such as reordering the vector loops. Each vrank-geq1 plan reduces the vector rank by 1, picking out a dimension determined by the vecloop_dim field of the solver. */ #include "rdft/rdft.h" typedef struct { solver super; int vecloop_dim; const int *buddies; size_t nbuddies; } S; typedef struct { plan_rdft super; plan *cld; INT vl; INT ivs, ovs; const S *solver; } P; static void apply(const plan *ego_, R *I, R *O) { const P *ego = (const P *) ego_; INT i, vl = ego->vl; INT ivs = ego->ivs, ovs = ego->ovs; rdftapply cldapply = ((plan_rdft *) ego->cld)->apply; for (i = 0; i < vl; ++i) { cldapply(ego->cld, I + i * ivs, O + i * ovs); } } static void awake(plan *ego_, enum wakefulness wakefulness) { P *ego = (P *) ego_; X(plan_awake)(ego->cld, wakefulness); } static void destroy(plan *ego_) { P *ego = (P *) ego_; X(plan_destroy_internal)(ego->cld); } static void print(const plan *ego_, printer *p) { const P *ego = (const P *) ego_; const S *s = ego->solver; p->print(p, "(rdft-vrank>=1-x%D/%d%(%p%))", ego->vl, s->vecloop_dim, ego->cld); } static int pickdim(const S *ego, const tensor *vecsz, int oop, int *dp) { return X(pickdim)(ego->vecloop_dim, ego->buddies, ego->nbuddies, vecsz, oop, dp); } static int applicable0(const solver *ego_, const problem *p_, int *dp) { const S *ego = (const S *) ego_; const problem_rdft *p = (const problem_rdft *) p_; return (1 && FINITE_RNK(p->vecsz->rnk) && p->vecsz->rnk > 0 && p->sz->rnk >= 0 && pickdim(ego, p->vecsz, p->I != p->O, dp) ); } static int applicable(const solver *ego_, const problem *p_, const planner *plnr, int *dp) { const S *ego = (const S *)ego_; const problem_rdft *p; if (!applicable0(ego_, p_, dp)) return 0; /* fftw2 behavior */ if (NO_VRANK_SPLITSP(plnr) && (ego->vecloop_dim != ego->buddies[0])) return 0; p = (const problem_rdft *) p_; if (NO_UGLYP(plnr)) { /* the rank-0 solver deals with the general case most of the time (an exception is loops of non-square transposes) */ if (NO_SLOWP(plnr) && p->sz->rnk == 0) return 0; /* Heuristic: if the transform is multi-dimensional, and the vector stride is less than the transform size, then we probably want to use a rank>=2 plan first in order to combine this vector with the transform-dimension vectors. */ { iodim *d = p->vecsz->dims + *dp; if (1 && p->sz->rnk > 1 && X(imin)(X(iabs)(d->is), X(iabs)(d->os)) < X(tensor_max_index)(p->sz) ) return 0; } /* prefer threaded version */ if (NO_NONTHREADEDP(plnr)) return 0; /* exploit built-in vecloops of (ugly) r{e,o}dft solvers */ if (p->vecsz->rnk == 1 && p->sz->rnk == 1 && REODFT_KINDP(p->kind[0])) return 0; } return 1; } static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) { const S *ego = (const S *) ego_; const problem_rdft *p; P *pln; plan *cld; int vdim; iodim *d; static const plan_adt padt = { X(rdft_solve), awake, print, destroy }; if (!applicable(ego_, p_, plnr, &vdim)) return (plan *) 0; p = (const problem_rdft *) p_; d = p->vecsz->dims + vdim; A(d->n > 1); cld = X(mkplan_d)(plnr, X(mkproblem_rdft_d)( X(tensor_copy)(p->sz), X(tensor_copy_except)(p->vecsz, vdim), TAINT(p->I, d->is), TAINT(p->O, d->os), p->kind)); if (!cld) return (plan *) 0; pln = MKPLAN_RDFT(P, &padt, apply); pln->cld = cld; pln->vl = d->n; pln->ivs = d->is; pln->ovs = d->os; pln->solver = ego; X(ops_zero)(&pln->super.super.ops); pln->super.super.ops.other = 3.14159; /* magic to prefer codelet loops */ X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); if (p->sz->rnk != 1 || (p->sz->dims[0].n > 128)) pln->super.super.pcost = pln->vl * cld->pcost; return &(pln->super.super); } static solver *mksolver(int vecloop_dim, const int *buddies, size_t nbuddies) { static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; S *slv = MKSOLVER(S, &sadt); slv->vecloop_dim = vecloop_dim; slv->buddies = buddies; slv->nbuddies = nbuddies; return &(slv->super); } void X(rdft_vrank_geq1_register)(planner *p) { /* FIXME: Should we try other vecloop_dim values? */ static const int buddies[] = { 1, -1 }; size_t i; for (i = 0; i < NELEM(buddies); ++i) REGISTER_SOLVER(p, mksolver(buddies[i], buddies, NELEM(buddies))); }